Accès libre

Comparison of the free volume sizes and shapes determined from crystallographic and PALS data

À propos de cet article

Citez

1. Tao, S. J. (1972). Positronium annihilation in molecular substances. J. Chem. Phys., 56, 5499–5510. DOI: 10.1063/1.1677067.10.1063/1.1677067Search in Google Scholar

2. Eldrup, M., Lightbody, D., & Sherwood, J. N. (1981). The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys., 63, 51–58. DOI: 10.1016/0301-0104(81)80307-2.10.1016/0301-0104(81)80307-2Search in Google Scholar

3. Jasińska, B., Kozioł, A. E., & Goworek, T. (1996). Ortho-positronium lifetimes in nonspherical voids. J. Radioanal. Nucl. Chem., 210(2), 617–623. DOI: 10.1007/BF02056403.10.1007/BF02056403Search in Google Scholar

4. Jasińska, B., Kozioł, A. E., & Goworek, T. (1999). Void shapes and o-Ps lifetime in molecular crystals. Acta Phys. Pol. A, 95, 557–561.10.12693/APhysPolA.95.557Search in Google Scholar

5. Goworek, T., Ciesielski, K., Jasińska, B., & Wawryszczuk, J. (1997). Positronium in large voids. Silicagel. Chem. Phys. Lett., 272, 91–95. DOI: 10.1016/S0009-2614(97)00504-6.10.1016/S0009-2614(97)00504-6Search in Google Scholar

6. Ciesielski, K., Dawidowicz, A., Goworek, T., Jasińska, B., & Wawryszczuk, J. (1998). Positronium lifetimes in porous Vycor glass. Chem. Phys. Lett., 289(1/2), 41–45. DOI: 10.1016/S0009-2614(98)00416-3.10.1016/S0009-2614(98)00416-3Search in Google Scholar

7. Kobayashi, Y., Zheng, W., Meyer, E. F., McGervey, J. D., Jamieson, A. M., & Simha, R. (1989). Free volume and physical aging of poly(vinyl acetate) studied by positron annihilation. Macromolecules, 22(5), 2302–2306. DOI: 10.1021/ma00195a052.10.1021/ma00195a052Search in Google Scholar

8. Dlubek, G., Pionteck, J., Sniegocka, M., Hassan, E. M., & Krause-Rehberg, R. (2007). Temperature and pressure dependence of the free volume in the perfluorinated polymer glass CYTOP: A positron lifetime and pressure-volume-temperature study. J. Polym. Sci. Pt. B-Pol. Phys., 45(18), 2519–2534. DOI: 10.1002/polb.21248.10.1002/polb.21248Search in Google Scholar

9. Brandt, W., & Paulin, R. (1968). Positronium diffusion in solids. Phys. Rev. Lett., 21, 193–195. DOI: 10.1103/PhysRevLett.21.193.10.1103/PhysRevLett.21.193Search in Google Scholar

10. Venkateswaran, K., Cheng, K. L., & Jean, Y. C. (1984). Application of positron annihilation to study the surface properties of porous resins. J. Phys. Chem., 88, 2465–2469. DOI: 10.1021/j150656a010.10.1021/j150656a010Search in Google Scholar

11. Tydda, M., Jasińska, B., Kozioł, A. E., & Wawrzycka-Gorczyca, I. (2013). Modification of the crystallographic structure of olanzapine during solvation by PALS and X-ray diffraction methods. Mater. Sci. Forum, 733, 92–95.10.4028/www.scientific.net/MSF.733.92Search in Google Scholar

12. Kansy, J. (1996). Microcomputer program for analysis of positron lifetime spectra. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 374, 235–244. DOI: 10.1016/0168-9002(96)00075-7.10.1016/0168-9002(96)00075-7Search in Google Scholar

13. Shukla, A., Peter, M., & Hoffmann, L. (1993). Analysis of positron lifetime spectra using quantified maximum entropy and a general linear filter. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Dect. Assoc. Equip., 335, 310–317. DOI: 10.1016/0168-9002(93)90286-Q.10.1016/0168-9002(93)90286-QSearch in Google Scholar

14. Jasińska, B., & Dawidowicz, A. L. (2003). Pore size determination in Vycor glass. Radiat. Phys. Chem., 68, 531–534. DOI: 10.1016/S0969-806X(03)00224-X.10.1016/S0969-806X(03)00224-XSearch in Google Scholar

15. Gidley, D. W., Frieze, W. E., Dull, T. L., Yee, A. F., Ryan, E. T., & Ho, H. M. (1999). Positronium annihilation in mesoporous thin films. Phys. Rev. B, 60(8), 5157–5160. DOI: 10.1103/PhysRevB.60.R5157.10.1103/PhysRevB.60.R5157Search in Google Scholar

16. Dlubek, G., Eichler, S., Hubner, Ch., & Nagel, Ch. (1999). Does the MELT program accurately reveal the lifetime distribution in polymers? Phys. Status Solidi A, 174, 313–325. DOI: 10.1002/(SICI)1521-396X(199908)174:2<313::AIDPSSA313>3.3.CO;2-U.Search in Google Scholar

17. Dlubek, G., Hubner, Ch., & Eichler, S. (1998). Do the CONTIN or the MELT programs accurately reveal the o-Ps lifetime distribution in polymers? Analysis of experimental lifetime spectra of amorphous polymers. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 142, 191–202. DOI: 10.1016/S0168-583X(98)00265-1.10.1016/S0168-583X(98)00265-1Search in Google Scholar

18. Zgardzinska, B. (2015). The size of smallest subnanometric voids estimated by positron annihilation method. Correction to the Tao-Eldrup model. Chem. Phys. Lett., 62, 20–22. DOI: 10.1016/j.cplett.2015.01.021.10.1016/j.cplett.2015.01.021Search in Google Scholar

19. Stepanov, S., & Byakov, V. (2003). Physical and radiation chemistry of positron and positronium. In Y. C. Jean, P. Mellon, & D. M. Schradder (Eds.), Principles and applications of positron and positronium chemistry (pp. 117–148). Singapore: World Scientific. DOI: 10.1142/9789812775610_0005.10.1142/9789812775610_0005Search in Google Scholar

20. Hirata, K., Kobayashi, Y., & Ujihira, Y. (1996). Diffusion coefficients of positronium in amorphous polymers. J. Chem. Soc., Faraday Trans., 92, 985–988.10.1039/ft9969200985Search in Google Scholar

eISSN:
0029-5922
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other