À propos de cet article

Citez

1. Stork, D., Agostini, P., Boutard, J. -L., Buckthorpe, D., Diegele, E., Dudarev, S. L., English, C., Federici, G., Gilbert, M. R., Gonzalez, S., Ibarra, A., Linsmeier, C., Puma, A. L., Marbach, G., Packer, L. W., Raj, B., Rieth, M., Tran, M. Q., Ward, D. J., & Zinkle, S. J. (2014). Materials R&D for a timely DEMO: Key findings and recommendations of the EU Roadmap Materials Assessment Group. Fusion Eng. Des., 89(7/8), 1586–1594. http://dx.doi.org/10.1016/j.fusengdes.2013.11.007.Search in Google Scholar

2. Wirtz, M., Linke, J., Pintsuk, G., Singheiser, L., & Zlobinski, M. (2013). Comparison of thermal shock damages induced by different simulation methods on tungsten. J. Nucl. Mater., 438(Suppl.), S833–S836. http://dx.doi.org/10.1016/j.jnucmat.2013.01.180.Search in Google Scholar

3. Linke, J. (2008). High heat flux performance of plasma facing materials and components under service conditions in future fusion reactors. Trans. Fusion Sci. Technol., 53, S278–S287.Search in Google Scholar

4. Garkusha, I. E., Arkhipov, N. I., Klimov, N. S., Makhlaj, V. A., Safronov, V. M., Landman, I., & Tereshin, V. I. (2009). The latest results from ELM-simulation experiments in plasma accelerators. Phys. Scripta, T138, 014054. DOI: 10.1088/0031-8949/2009/T138/014054.10.1088/0031-8949/2009/T138/014054Search in Google Scholar

5. Shu, W. M., Nakamichi, M., Alimov, V. K., Luo, G. N., Isobe, K., & Yamanishi, T. (2009). Deuterium retention, blistering and local melting at tungsten exposed to high-fluence deuterium plasma. J. Nucl. Mater., 390/391, 1017–1021. http://dx.doi.org/10.1016/j.jnucmat.2009.01.267.Search in Google Scholar

6. Morgan, T. W., van Eden, G. G., de Kruif, T. M., van den Berg, M. A., Matějíček, J., Chráska, T., & De Temmerman, G. (2014). ELM-induced melting: assessment of shallow melt layer damage and the power handling capability of tungsten in a linear plasma device. Phys. Scripta, T159, 014022. DOI: 10.1088/0031-8949/2014/T159/014022.10.1088/0031-8949/2014/T159/014022Search in Google Scholar

7. Shirokova, V., Laas, T., Ainsaar, A., Priimets, J., Ugaste, Ü., Demina, E. V., Pimenov, V. N., Maslyaev, S. A., Dubrovsky, A. V., Gribkov, V. A., Scholz, M., & Mikli, V. (2013). Comparison of damages in tungsten and tungsten doped with lanthanum-oxide exposed to dense deuterium plasma shots. J. Nucl. Mater., 43(1/3), 181–188. http://dx.doi.org/10.1016/j.jnucmat.2012.12.027.Search in Google Scholar

8. Riesch, J., Buffiere, J. Y., Höschen, T., di Michiel, M., Scheel, M., Linsmeier, C., & You, J. H. (2013). In situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system. Acta Mater., 61(19), 7060–7071. http://dx.doi.org/10.1016/j.actamat.2013.07.035.Search in Google Scholar

9. Nishijima, D., Sugimoto, T., Iwakiri, H., Ye, M. Y., Ohno, N., Yoshida, N., & Takamura, S. (2005). Characteristic changes of deuterium retention on tungsten surfaces due to low-energy helium plasma pre-exposure. J. Nucl. Mater., 337/339, 927–931. http://dx.doi.org/10.1016/j.jnucmat.2004.10.011.Search in Google Scholar

10. Yuan, Y., Greuner, H., Böswirth, B., Linsmeier, C., Luo, G. N., Fu, B. Q., Xu, H. Y., Shen, Z. J., & Liu, W. (2013). Surface modification of molten W exposed to high heat flux helium neutral beams. J. Nucl. Mater., 437(1/3), 297–302. http://dx.doi.org/10.1016/j.jnucmat.2013.02.043.Search in Google Scholar

11. Ueda, Y., Coenen, J. W., De Temmerman, G., Doerner, R. P., Linke, J., Philipps, V., & Tsitrone, E. (2014). Research status and issues of tungsten plasma facing materials for ITER and beyond. Fusion Eng. Des., 89(7/8), 901–906. http://dx.doi.org/10.1016/j.fusengdes.2014.02.078.Search in Google Scholar

12. Shin, K., Shuichi, T., Noriyasu, O., Dai, N., Hirotomo, I., & Naoaki, Y. (2007). Sub-ms laser pulse irradiation on tungsten target damaged by exposure to helium plasma. Nucl. Fusion, 47(9), 1358–1366. DOI: 10.1088/0029-5515/47/9/038.10.1088/0029-5515/47/9/038Search in Google Scholar

13. Matějíček, J., Kavka, T., Bertolissi, G., Ctibor, P., Vilémová, M., Mušálek, R., & Nevrlá, B. (2013). The role of spraying parameters and inert gas shrouding in hybrid water-argon plasma spraying of tungsten and copper for nuclear fusion applications. J. Therm. Spray Technol., 22(5), 744–75510.1007/s11666-013-9895-xSearch in Google Scholar

14. Hirai, T., Pintsuk, G., Linke, J., & Batilliot, M. (2009). Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures. J. Nucl. Mater., 390/391, 751–754. http://dx.doi.org/10.1016/j.jnucmat.2009.01.313.Search in Google Scholar

15. Shu, W. M., Kawasuso, A., & Yamanishi, T. (2009). Recent findings on blistering and deuterium retention in tungsten exposed to high-fluence deuterium plasma. J. Nucl. Mater., 386/388, 356–359. http://dx.doi.org/10.1016/j.jnucmat.2008.12.129.Search in Google Scholar

16. Mušálek, R., Matějíček, J., Vilémová, M., & Kovářík, O. (2010). Non-linear mechanical behavior of plasma sprayed alumina under mechanical and thermal loading. J. Therm. Spray Technol., 19(1/2), 422–428. 10.1007/s11666-009-9362-x.10.1007/s11666-009-9362-xSearch in Google Scholar

17. Tan, J., Zhou, Z.-j., Zhu, X.-p., Guo, S.-q., Qu, D.-d., Lei, M.-k., & Ge, C.-c. (2012). Evaluation of ultrafine grained tungsten under transient high heat flux by high-intensity pulsed ion beam. Trans. Nonferrous Met. Soc. China., 22(5), 1081–1085. http://dx.doi.org/10.1016/S1003-6326(11)61286-7.Search in Google Scholar

18. Eliáš, M., Frgala, Z., Kudrle, V., Janča, J., & Brožek, V. (2004). Low temperature metallurgy of tungsten in plasma reactors. J. Adv. Oxidation Technol., 7(1), 91–97.Search in Google Scholar

19. Ohno, N., Kajita, S., Nishijima, D., & Takamura, S. (2007). Surface modification at tungsten and tungsten coated graphite due to low energy and high fluence plasma and laser pulse irradiation. J. Nucl. Mater., 363/365, 1153–1159. http://dx.doi.org/10.1016/j.jnucmat.2007.01.148.Search in Google Scholar

eISSN:
0029-5922
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other