À propos de cet article

Citez

1. Stevenson, R. M., Pepler, D. A., Danson, C. N., Norman, M. J., Bett, T. H., & Ross, I. N. (1994). Binary-phase zone plate arrays for the generation of uniform focal profiles. Opt. Lett., 19(6), 363–365.10.1364/OL.19.000363Search in Google Scholar

2. Koenig, M., Faral, B., Boudenne, J. M., Batani, D., Benuzzi, A., & Bossi, S. (1994). Optical smoothing techniques for shock wave generation in laser-produced plasmas. Phys. Rev. E, 50(5), R3314.10.1103/PhysRevE.50.R3314Search in Google Scholar

3. Batani, D., Bleu, C., & Lower, Th. (2002). Design, simulation and application of phase plates. Eur. Phys. J. D, 19, 231–243.10.1140/epjd/e20020074Search in Google Scholar

4. Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, M., & Yamanaka, C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett., 53(11), 1057.10.1103/PhysRevLett.53.1057Search in Google Scholar

5. Dixit, S. N., Lawson, J. K., Manes, K. R., Powell, H. T., & Nugent, A. (1994). Kinoform phase plates for focal plane irradiance profile control. Opt. Lett., 19(6), 417–419.10.1364/OL.19.000417Search in Google Scholar

6. Skupsky, S., Short, R. W., & Kessler, T. (1989). Improved laser-beam uniformity using the angular dispersion of frequency modulated light. J. Appl. Phys., 66, 3456.10.2172/6211374Search in Google Scholar

7. Lehmberg, R. H., & Obenschain, S. P. (1983). Use of induced spatial incoherence for uniform illumination of laser fusion targets. Opt. Commun., 46, 27–31.10.1016/0030-4018(83)90024-XSearch in Google Scholar

8. Willi, O., Afshar-rad, T., Coe, S., & Giulietti, A. (1990). Study of instabilities in long scale-length plasmas with and without laser-beam-smoothing techniques. Phys. Fluids, 2, 1318–1324.10.1063/1.859549Search in Google Scholar

9. Batani, D., Bossi, S., Benuzzi, A., Koenig, M., Faral, B., Boudenne, J. M., Grandjouan, N., Atzeni, S., & Temporalet, M. (1996). Optical smoothing for shock-wave generation: application to the measurement of equations of state. Laser Part. Beams, 14(2), 211–223.10.1017/S0263034600009940Search in Google Scholar

10. Montgomery, D. S., Moody, J. D., Baldis, H. A., Afeyan, B. B., Berger, R. L., Estabrook, K. G., Lasinski, B. F., Williams, E. A., & Labaune, C. (1996). Effects of laser beam smoothing on stimulated Raman scattering in exploding foil plasmas. Phys. Plasmas, 3(5), 1728. http://dx.doi.org/10.1063/1.871682.Search in Google Scholar

11. Labaune, C., Baldis, H. A., Schifano, E., Bauer, B. S., Maximov, A., Ourdev, I., Rozmus, W., & Pesme, D. (2000). Enhanced forward scattering in the case of two crossed laser beams interacting with a plasma. Phys. Rev. Lett., 85(8), 1658.10.1103/PhysRevLett.85.165810970582Search in Google Scholar

12. Emery, M. H., Gardner, J. H., Lehmberg, R. H., & Obenschain, S. P. (1991). Hydrodynamic target response to an induced spatial incoherence-smoothed laser beam. Phys. Fluids B, 3, 2640–2650.10.1063/1.859976Search in Google Scholar

13. Desselberger, M., Afshar-rad, T., Khattak, F., Viana, S., & Willi, O. (1992) Nonuniformity imprint on the ablation surface of laser-irradiated targets. Phys. Rev. Lett., 68(10), 1539.10.1103/PhysRevLett.68.153910045157Search in Google Scholar

14. Batani, D., Balducci, A., Nazarov, W., Löwer, Th., Hall, T., Koenig, M., Faral, B., Benuzzi, A., & Temporal, M. (2001). Use of low-density foams as pressure amplifiers in equation-of-state experiments with laser-driven shock waves. Phys. Rev. E, 63(4), 046410.10.1103/PhysRevE.63.04641011308959Search in Google Scholar

15. Batani, D., Nazarov, W., Hall, T., Löwer, Th., Koenig, M., Faral, B., Benuzzi-Mounaix, A., & Grandjouan, N. (2000). Foam smoothing studied through laser produced shocks. Phys. Rev. E, 62(6), 8573–8582.10.1103/PhysRevE.62.8573Search in Google Scholar

16. Benocci, R., Batani, D., Dezulian, R., Redaelli, R., Lucchini, G., Canova, F., Stabile, H., Faure, J., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Koenig, M., Tikhonchuk, V., Nicolaï, Ph., & Malka, V. (2009). Direct evidence of gas-induced laser beam smoothing in the interaction, with thin foils. Phys. Plasmas, 16(1), 012703. http://dx.doi.org/10.1063/1.3056396.Search in Google Scholar

17. Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P., & Ullschmied, J. (2001). The Prague Asterix Laser System. Phys. Plasmas, 8, 2495. http://dx.doi.org/10.1063/1.1350569.Search in Google Scholar

18. Zel’dovich, Ya. B., & Raizer, Yu. P. (2002). Physics of shock waves and high-temperature hydrodynamical phenomena. Dover, New York.Search in Google Scholar

19. Lindl, J. (1995). Development of indirect-drive approach to inertial confinement fusion and target physics basis for ignition and gain. Phys. Plasmas, 2, 3933–4024.10.1063/1.871025Search in Google Scholar

20. Ramis, R., Meyer-ter-Vehn, J., & Ramírez, J. (2009). MULTI2D – a computer code for two-dimensional radiation hydrodynamics. Comput. Phys. Commun., 180, 977–994.10.1016/j.cpc.2008.12.033Search in Google Scholar

21. Aliverdiev, A., Batani, D., Dezulian, R., Vinci, T., Benuzzi-Mounaix, A., Koenig, M., & Malka, V. (2008). Hydrodynamics of laser-produced plasma corona by optical interferometry. Plasma Phys. Control. Fusion, 50, 105013.10.1088/0741-3335/50/10/105013Search in Google Scholar

22. Aliverdiev, A., Batani, D., Antonelli, L., Jakubowska, K., Dezulian, R., Amirova, A., Gajiev, G., Khan, M., & Pant, H. C. (2014). Use of multilayer targets for achieving off-Hugoniot states. Phys. Rev. E, 89, 053101.10.1103/PhysRevE.89.05310125353898Search in Google Scholar

eISSN:
0029-5922
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other