1. bookVolume 60 (2015): Edition 1 (March 2015)
Détails du magazine
License
Format
Magazine
eISSN
1508-5791
Première parution
25 Mar 2014
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Mössbauer spectroscopy study of 60P2O5-40Fe2O3 glass crystallization

Publié en ligne: 12 Mar 2015
Volume & Edition: Volume 60 (2015) - Edition 1 (March 2015)
Pages: 133 - 136
Reçu: 18 Jun 2014
Accepté: 02 Nov 2014
Détails du magazine
License
Format
Magazine
eISSN
1508-5791
Première parution
25 Mar 2014
Périodicité
4 fois par an
Langues
Anglais
Abstract

60P2O5-40Fe2O3 glass was synthesized and 57Fe Mössbauer spectroscopy study was presented. The main goal of the research was to investigate structural changes of local environment of iron ions during gradual crystallization of the glass. It was observed that some changes were evidenced at temperature of heat treatment higher than 400°C, above which content of tetrahedrally coordinated Fe3+ was increased in cost of octahedral sites. This led to formation of areas of nucleation of α-FePO4. Crystallization of α-Fe3(P2O7)2 and Fe2P2O7 was also observed.

Keywords

1. Wacławska, I., & Szumera, M. (2010). Thermal behaviour of Fe-doped silicate-phosphate glasses. J. Therm. Anal. Calorim., 101(2), 423–427. DOI: 10.1007/s10973-010-0798-5.10.1007/s10973-010-0798-5Search in Google Scholar

2. Donald, W. (2007). Immobilisation of radioactive and non-radioactive wastes in glass-based systems: an overview. Glass Technol.: Eur. J. Glass Sci. Technol. Part A, 48(4), 155–163.Search in Google Scholar

3. Ojovan, M. I., & Lee, W. E. (2005). An introduction to nuclear waste immobilisation. Oxford, UK: Elsevier Science. DOI: 10.1016/B978-008044462-8.Search in Google Scholar

4. Stoch, P., Ciecinska, M., & Stoch, A. (2014). Thermal properties of phosphate glasses for salt waste immobilization. J. Therm. Anal. Calorim., 117(1), 177–204. DOI: 10.1007/s10973-014-3698-2.10.1007/s10973-014-3698-2Search in Google Scholar

5. Wright, A. C., Sinclair, R. N., Shaw, J. L., Haworth, R., Marasinghe, G., Day, D. E., Bingham, P. A., Forder, S. D., Cuello, G. J., & Fischer, H. E. (2012). The atomic and magnetic structure and dynamics of iron phosphate glasses. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 53(6), 227–244.Search in Google Scholar

6. Wivel, C., & Mørup, S. (1981). Improved computational procedure for evaluation of overlapping hyperfine parameter distributions in Mössbauer spectra. J. Phys. E-Sci. Instrum., 14(5), 605–610. DOI: 10.1088/0022-3735/14/5/018.10.1088/0022-3735/14/5/018Search in Google Scholar

7. Alberto, H. V., Pinto da Cunha, J. L., Mysen, B. O., Gil, J. M., & Ayres de Campos, N. (1996). Analysis of Mössbauer spectra of silicate glass using a two-dimensional Gaussian distribution of hyperfine parameters. J. Non-Cryst. Solids, 194(1), 48–57. DOI: 10.1016/0022-3093(95)00463-7.10.1016/0022-3093(95)00463-7Search in Google Scholar

8. Stoch, P., Ciecinska, M., Zachariasz, P., Suwalski, J., Górski, L., & Wójcik, T. (2013). Mössbauer spectroscopy study of 60P2O5-40Fe2O3 glass. Nukleonika, 58(1), 63–66.Search in Google Scholar

9. Stoch, P., Szczerba, W., Bodnar, W., Ciecińska, M., Stoch, A., & Burkel, E. (2014). Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations. Phys. Chem. Chem. Phys., 16, 19917–19927. DOI: 10.1039/C4CP03113J.10.1039/C4CP03113JSearch in Google Scholar

10. Millet, J. M., Verley, C., Forissier, M., Bussiere, P., & Verdine, J. C. (1989). Mössbauer spectroscopic study of iron phosphate catalysts used in selective oxidation. Hyperfine Interact., 46(1), 619–628. DOI: 10.1007/BF02398251.10.1007/BF02398251Search in Google Scholar

11. Khan, F. B., Bharuth-Ram, K., & Friedrich, H. B. (2010). Phase transformations of the FePO4 catalyst in the oxidative dehydrogenation to form an alkyl methacrylate. Hyperfine Interact., 197(1/3), 317–323. DOI 10.1007/s10751-010-0254-8.10.1007/s10751-010-0254-8Search in Google Scholar

12. Ericsson, T., Nord, A. G., Ahmed, M. M. O., Gismelseed, A., & Khangi, F. (1990). Fe2P2O7 and Fe2P4O12 studied between 5–800 K. Hyperfine Interact., 57(1/4), 2179–2186. DOI: 10.1007/BF02405783.10.1007/BF02405783Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo