1. bookVolume 62 (2016): Edition 2 (June 2016)
Détails du magazine
License
Format
Magazine
eISSN
2385-8052
Première parution
22 Feb 2015
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Testing the Performance of Cubic Splines and Nelson-Siegel Model for Estimating the Zero-coupon Yield Curve

Publié en ligne: 24 Jun 2016
Volume & Edition: Volume 62 (2016) - Edition 2 (June 2016)
Pages: 42 - 50
Reçu: 01 Dec 2015
Accepté: 01 Mar 2016
Détails du magazine
License
Format
Magazine
eISSN
2385-8052
Première parution
22 Feb 2015
Périodicité
4 fois par an
Langues
Anglais

1. Anderson, N., & Sleath, J. (1999). New estimates of the UK real and nominal yield curves. Bank of England Quarterly Bulletin, November, 384-392.Search in Google Scholar

2. BIS. (2005). Zero-coupon yield curves: Technical documentation. Basle: Bank for International Settlements.Search in Google Scholar

3. Bjork, T., & Christensen, B. (1997). Interest rate dynamics and consistent forward rate curves. University of Aarhus Working Paper, 1-38.Search in Google Scholar

4. Christensen, J. H., Diebold, F. X., & Rudebusch, G. (2009). An arbitrage-free generalized Nelson-Siegel term structure model. The Econometrics Journal, 12(3), 33-64. http://dx.doi.org/10.1111/j.1368-423X.2008.00267.x10.1111/j.1368-423X.2008.00267.xSearch in Google Scholar

5. Christensen, J. H. E., Diebold, F. X., & Rudebusch, G. D. (2011). The affine arbitrage-free class of Nelson-Siegel term structure models. Journal of Econometrics, 164(1), 4-20. http://dx.doi.org/10.1016/j.jeconom.2011.02.01110.1016/j.jeconom.2011.02.011Search in Google Scholar

6. Christofi, A. C. (1998). Estimation of the Nelson-Siegel parsimonious modeling of yield curves using an exponential GARCH process. Managerial Finance, 24(9/10), 1-19. http://dx.doi.org/10.1108/0307435981076581310.1108/03074359810765813Search in Google Scholar

7. Coroneo, L., Nyholm, K., & Vidova-Koleva, R. (2011). How arbitrage-free is the Nelson-Siegel model? Journal of Empirical Finance, 18(3), 393-407. http://dx.doi.org/10.1016/j.jempfin.2011.03.00210.1016/j.jempfin.2011.03.002Search in Google Scholar

8. De Rezende, R. B., & Ferreira, M. S. (2013). Modeling and forecasting the yield curve by an extended Nelson-Siegel class of models: A quantile autoregression approach. Journal of Forecasting, 32(2), 111-123. http://dx.doi.org/10.1002/for.125610.1002/for.1256Search in Google Scholar

9. Diebold, F. X., & Li, C. (2006). Forecasting the term structure of government bond yields. Journal of Econometrics, 130(2), 337-364. http://dx.doi.org/10.1016/j.jeconom.2005.03.00510.1016/j.jeconom.2005.03.005Search in Google Scholar

10. Diebold, F. X., Li, C., & Yue, V. Z. (2008). Global yield curve dynamics and interactions: A dynamic Nelson-Siegel approach. Journal of Econometrics, 146(2), 351-363. http://dx.doi.org/10.1016/j.jeconom.2008.08.01710.1016/j.jeconom.2008.08.017Search in Google Scholar

11. Diebold, F. X., Rudebusch, G. D., & Aruoba, B. (2006). The macroeconomy and the yield curve: a dynamic latent factor approach. Journal of Econometrics, 131(1-2), 309-338. http://dx.doi.org/10.1016/j.jeconom.2005.01.01110.1016/j.jeconom.2005.01.011Search in Google Scholar

12. Exterkate, P., van Dijk, D., Heij, C., & Groenen, P. J. F. (2013). Forecasting the yield curve in a data-rich environment using the factor- augmented Nelson-Siegel model. Journal of Forecasting, 32(3), 193-214. http://dx.doi.org/10.1002/for.125810.1002/for.1258Search in Google Scholar

13. Fisher, M., Nychka, D., & Zervos, D. (1995). Fitting the term structure of interest rates with smoothing splines. Working Paper 95-1, Finance and Economics Discussion Series, Federal Reserve Board.Search in Google Scholar

14. Gauthier, G., & Simonato, J-G. (2012). Linearized Nelson-Siegel and Svensson models for the estimation of spot interest rates. European Journal of Operational Research, 219(2), 442-451. http://dx.doi.org/10.1016/j.ejor.2012.01.00410.1016/j.ejor.2012.01.004Search in Google Scholar

15. Heath, D., Jarrow, R., & Morton, A. (1992). Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica, 60(1), 77-105. http://dx.doi.org/10.2307/295167710.2307/2951677Search in Google Scholar

16. Ioannides, M. (2003). A comparison of yield curve estimation techniques using UK data. Journal of Banking & Finance, 27(1), 1-26. http://dx.doi.org/10.1016/S0378-4266(01)00217-510.1016/S0378-4266(01)00217-5Search in Google Scholar

17. Jankowitsch, R., & Pichler, S. (2003). Estimating zero-coupon yield curves for EMU government bonds. Work based on a research project funded by the Austrian National Bank (OeNB-Jubiläumsfondprojekt Nr. 8808). Vienna University of Economics and Business Administration, December 2003.Search in Google Scholar

18. Jordan, J. V., & Mansi, S. A. (2003). Term structure estimation from on-the-run Treasuries. Journal of Banking & Finance, 27(8), 1487-1509. http://dx.doi.org/10.1016/S0378-4266(02)00273-X10.1016/S0378-4266(02)00273-XSearch in Google Scholar

19. Linton, O., Mammen, E., Nielsen, J. P., & Tanggaard, C. (2001). Yield curve estimation by kernel smoothing methods. Journal of Econometrics, 105(1), 185-223. http://dx.doi.org/10.1016/S0304-4076(01)00075-610.1016/S0304-4076(01)00075-6Search in Google Scholar

20. Luo, X., Han, H., & Zhang, J. E. (2012). Forecasting the term structure of Chinese Treasury yields. Pacific-Basin Finance Journal, 20(5), 639-659. http://dx.doi.org/10.1016/j.pacfin.2012.02.00210.1016/j.pacfin.2012.02.002Search in Google Scholar

21. Manousopoulos, P., & Michalopoulos, M. (2009). Comparison of non-linear optimization algorithms for yield curve estimation. European Journal of Operational Research, 192(2), 594-602. http://dx.doi.org/10.1016/j.ejor.2007.09.01710.1016/j.ejor.2007.09.017Search in Google Scholar

22. McCulloch, J. H. (1971). Measuring the term structure of interest rates. The Journal of Business, 44, 19-31.10.1086/295329Search in Google Scholar

23. McCulloch, J. (1975). The tax-adjusted yield curve. Journal of Finance, 30, 811-830. http://dx.doi.org/10.1111/j.1540-6261.1975.tb01852.x10.1111/j.1540-6261.1975.tb01852.xSearch in Google Scholar

24. Nelson, C., & Siegel, A. (1987). Parsimonious modeling of the yield curve. Journal of Business, 60(4), 473-489.10.1086/296409Search in Google Scholar

25. Rugengamanzi, M. N. (2013). Term structure estimation based on a generalized optimization framework (Doctoral dissertation, No. 1539). Sweden, Linköping University, Department of Mathematics.Search in Google Scholar

26. Svensson, L. (1995). Estimating forward interest rates with the extended Nelson and Siegel method. Sveriges Riksbank Quarterly Review, 3.Search in Google Scholar

27. Teichmann, J., & Wüthrich, M. V. (2013). Consistent long-term yield curve prediction. (Under review). Retrieved from https://people.math.ethz.ch/~wueth/Papers/2013_Yield_Curve_Prediction.pdfSearch in Google Scholar

28. Waggoner, D. F. (1997). Spline methods for extracting interest rate curves from coupon bond prices. Federal Reserve Bank of Atlanta, Working Paper 97-10.Search in Google Scholar

29. Wiseman, J. (1994). The exponential yield curve model. JPMorgan European Fixed Income Research.Search in Google Scholar

30. Yu, W.-C., & Zivot, E. (2011). Forecasting the term structures of Treasury and corporate yields using dynamic Nelson-Siegel models. International Journal of Forecasting, 27(2), 579-591. http://dx.doi.org/10.1016/j.ijforecast.2010.04.002 10.1016/j.ijforecast.2010.04.002Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo