Accès libre

Stationary Wavelet-based Two-directional Two-dimensional Principal Component Analysis for EMG Signal Classification

À propos de cet article

Citez

[1] Xie, H.B., Zheng, Y.P., Guo, J.Y. (2009). Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control. Physiological Measurement, 30, 441-457.10.1088/0967-3334/30/5/002Search in Google Scholar

[2] Engelhart, K., Hudgins, B., Parker, P.A., Stevenson, M. (1999). Classification of the myoelectric signal using time-frequency based representations. Medical Engineering & Physics, 21, 431-438.10.1016/S1350-4533(99)00066-1Search in Google Scholar

[3] Khezri, M., Jahed, M. (2007). Real-time intelligent pattern recognition algorithm for surface EMG signals. Biomedical Engineering Online, 6, 45.10.1186/1475-925X-6-45Search in Google Scholar

[4] Qi, L.P., Wakeling, J.M., Ferguson-Pell, M. (2011). Spectral properties of electromyographic and mechanomyographic signals during dynamic concentric and eccentric contractions of the human biceps brachii muscle. Journal of Electromyography and Kinesiology, 21, 1056-1063.10.1016/j.jelekin.2011.08.011Search in Google Scholar

[5] Qi, L.P., Wakeling, J.M., Green, A., Lambrecht, K., Ferguson-Pell, M. (2011). Spectral properties of electromyographic and mechanomyographic signals during isometric ramp and step contractions in biceps brachii. Journal of Electromyography and Kinesiology, 21, 128-135.10.1016/j.jelekin.2010.09.006Search in Google Scholar

[6] Von Tscharner, V., Goepfert, B. (2006). Estimation of the interplay between groups of fast and slow muscle fibers of the tibialis anterior and gastrocnemius muscle while running. Journal of Electromyography and Kinesiology, 16, 188-197.10.1016/j.jelekin.2005.07.004Search in Google Scholar

[7] Wakeling, J.M., Uehli, K., Rozitis, A.I. (2006). Muscle fibre recruitment can respond to the mechanics of the muscle contraction. Journal of the Royal Society Interface, 3, 533-544.10.1098/rsif.2006.0113Search in Google Scholar

[8] Wakeling, J., Delaney, R., Dudkiewicz, I. (2007). A method for quantifying dynamic muscle dysfunction in children and young adults with cerebral palsy. Gait & Posture, 25, 580-589.10.1016/j.gaitpost.2006.06.009Search in Google Scholar

[9] Weiderpass, H.A., Pachi, C.G.F., Yamamoto, J.F., Hamamoto, A., Onodera, A.N., Sacco, I.C.N. (2013). Time-frequency analysis methods for detecting effects of diabetic neuropathy. International Journal for Numerical Methods in Biomedical Engineering, 29, 1000-1010.10.1002/cnm.2545Search in Google Scholar

[10] Yang, J., Zhang, D., Frangi, A.F., Yang, J.Y. (2004). Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 131-137.10.1109/TPAMI.2004.1261097Search in Google Scholar

[11] Zhang, D.Q., Zhou, Z.H. (2005). (2D)(2)PCA: Two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing, 69, 224-231.10.1016/j.neucom.2005.06.004Search in Google Scholar

[12] Kiatpanichagij, K., Afzulpurkar, N. (2009). Use of supervised discretization with PCA in wavelet packet transformation-based surface electromyrogram classification. Biomedical Signal Processing and Control, 4, 127-138.10.1016/j.bspc.2009.02.004Search in Google Scholar

[13] Jolliffe, I.T., Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of The Royal Society A – Mathematical Physical and Engineering Sciences, 374, 20150202.10.1098/rsta.2015.0202Search in Google Scholar

[14] Bro, R., Smilde, A.K. (2014). Principal component analysis. Analytical Methods, 6, 2812-2831.10.1039/C3AY41907JSearch in Google Scholar

[15] Englehart, K., Hudginsa, B., Chan, A.D.C. (2003). Continuous multifunction myoelectric control using pattern recognition. Technology and Disability, 15, 95-103.10.3233/TAD-2003-15205Search in Google Scholar

[16] Huang, H., Xie, H.B., Guo, J.Y., Chen, H.J. (2012). Ant colony optimization-based feature selection method for surface electromyography signals classification. Computers in Biology and Medicine, 42, 30-38.10.1016/j.compbiomed.2011.10.004Search in Google Scholar

[17] Hakonen, M., Piitulainen, H., Visala, A. (2015). Current state of digital signal processing in myoelectric interfaces and related applications. Biomedical Signal Processing and Control, 18, 334-359.10.1016/j.bspc.2015.02.009Search in Google Scholar

[18] Kilby, J., Prasad, K., Mawston, G. (2016). Multi-channel surface electromyography electrodes: A review. IEEE Sensors Journal, 16, 5510-5519.10.1109/JSEN.2016.2569072Search in Google Scholar

[19] Lucas, M.F., Gaufriau, A., Pascual, S., Doncarli, C., Farina, D. (2008). Multi-channel surface EMG classification using support vector machines and signal-based wavelet optimization. Biomedical Signal Processing and Control, 3, 169-174.10.1016/j.bspc.2007.09.002Search in Google Scholar

[20] Farina, D., do Nascimento, O.F., Lucas, M.F., Doncarli, C. (2007). Optimization of wavelets for classification of movement-related cortical potentials generated by variation of force-related parameters. Journal of Neuroscience Methods, 162, 357-363.10.1016/j.jneumeth.2007.01.011Search in Google Scholar

eISSN:
1335-8871
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing