À propos de cet article

Citez

[1] Head, V.P., Hatboro, P.A. (1954). Coefficients of float-type variable-area flowmeters. Transactions of the ASME, 76, 851-862.10.1115/1.4014989Search in Google Scholar

[2] Schoenborn, E.M., Colburn, A.P. (1939). The flow mechanism and performance of the rotameter. Transactions of the American Institute of Chemical Engineers, 35, 359-389.Search in Google Scholar

[3] Whitewell, J.C., Plumb, D.S. (1939). Correlation of rotameter flow rates. Industrial & Engineering Chemistry, 31 (4), 451-456.10.1021/ie50352a012Search in Google Scholar

[4] Polentz, L.M. (1961). Theory and operation of rotameters. Instruments & Control Systems, 34, 1048-1051.Search in Google Scholar

[5] Urata, E. (1979). A new design of float-type variable area flowmeter. Bulletin of JSME, 22 (171), 1212-1219.10.1299/jsme1958.22.1212Search in Google Scholar

[6] Vallascas, R. (1987). New float flowmeter. Review of Scientific Instruments, 58 (8), 1499-1504.10.1063/1.1139387Search in Google Scholar

[7] Liu, C.Y., Lua, A.C., Chan, W.K., Wong, Y.W. (1995). Theoretical and experimental investigations of a capacitance variable area flowmeter. Transactions of the Institute of Measurement and Control, 17 (2), 84-89.10.1177/014233129501700204Search in Google Scholar

[8] Baker, R.C. (2004). The impact of component variation in the manufacturing process on variable area (VA) flowmeter performance. Flow Measurement and Instrumentation, 15 (4), 207-213.10.1016/j.flowmeasinst.2004.03.002Search in Google Scholar

[9] Baker, R.C., Sorbie, I. (2001). A review of the impact of component variation in the manufacturing process on variable area (VA) flowmeter performance. Flow Measurement and Instrumentation , 12 (2), 101-112.10.1016/S0955-5986(01)00004-8Search in Google Scholar

[10] Sondh, H.S., Singh, S.N., Seshadri, V., Gandhi, B.K. (2002). Design and development of variable area orifice meter. Flow Measurement and Instrumentation, 13 (3) 69-73.10.1016/S0955-5986(02)00030-4Search in Google Scholar

[11] Singh, S.N., Gandhi, B.K., Seshadri, V., Chauhan, V.S. (2004). Design of a bluff body for development of variable area orifice-meter. Flow measurement and Instrumentation, 15 (2), 97-103.10.1016/j.flowmeasinst.2003.11.001Search in Google Scholar

[12] Ning, J., Peng, J. (2009). A temperature compensation method based on neural net for metal tube rotameter. In International Conference on Transportation Engineering 2009. ASCE, 2334-2339.10.1061/41039(345)386Search in Google Scholar

[13] Bückle, U., Durst, F., Howe, B., Melling, A. (1992). Investigation of a floating element flowmeter. Flow Measurement and Instrumentation, 3 (4), 215-225.10.1016/0955-5986(92)90019-2Search in Google Scholar

[14] Bückle, U., Durst, F., Köchner, H., Melling, A. (1995). Further investigation of a floating element flowmeter. Flow Measurement and Instrumentation, 6 (1), 75-78.10.1016/0955-5986(95)93460-CSearch in Google Scholar

[15] Turkowski, M. (2004). Influence of fluid properties on the characteristics of a mechanical oscillator flowmeter. Measurement, 35 (1), 11-18.10.1016/j.measurement.2003.10.002Search in Google Scholar

[16] Turkowski, M. (2003). Progress towards the optimization of a mechanical oscillator flowmeter. Flow Measurement and Instrumentation, 14 (1-2), 13-21.10.1016/S0955-5986(02)00091-2Search in Google Scholar

[17] Fisher, K. (1940). Elimination of viscosity as a factor in defining rotameter calibration. Transactions of the AIChE, 86, 857-869.Search in Google Scholar

[18] Miller, R.W. (1983). Flow Measurement Engineering Handbook. McGraw-Hill, 1443-1458.Search in Google Scholar

[19] Levin, H., Escorza, M.M. (1983). Gas flow through rotameters. Industrial & Engineering Chemistry Fundamentals, 22 (2), 163-166.10.1021/i100010a002Search in Google Scholar

[20] Wojtkowiak, J., Popiel, Cz.O. (1996). Viscosity correction factor for rotameter. Journal of Fluids Engineering, 118 (3), 569-573.10.1115/1.2817796Search in Google Scholar

[21] Fredrickson, A.G. (1959). Flow of non-Newtonian fluids in annuli. Ph.D. University of Wisconsin.Search in Google Scholar

[22] Glauert, M.B. (1956). The wall jet. Journal of Fluid Mechanics, 1 (6), 625-643.10.1017/S002211205600041XSearch in Google Scholar

[23] Launder, B.E., Rodi, W. (1979). The turbulent wall jet. Progress in Aerospace Sciences, 19, 81-128.10.1016/0376-0421(79)90002-2Search in Google Scholar

[24] van Hooff, T., Blocken, B., Defraeye, T., Carmeliet, J., van Heijst, G.J.F. (2012). PIV measurements of a plane wall jet in a confined space at transitional slot Reynolds numbers. Experiments in Fluids, 53 (2), 499-517.10.1007/s00348-012-1305-5Search in Google Scholar

[25] Craft, T.J., Launder, B.E. (2001). On the spreading mechanism of the three-dimensional turbulent wall jet. Journal of Fluid Mechanics, 435, 305-326.10.1017/S0022112001003846Search in Google Scholar

[26] Verhoff, A. (1963). The two-dimensional, turbulent wall jet with and without an external free stream. Report No. 626, Princeton University, NJ.Search in Google Scholar

[27] Rajaratnam, N. (1967). Plane turbulent wall jets on rough boundaries . Water Power, 19, 149-153.Search in Google Scholar

[28] Azim, M.A. (2013). On the structure of a plane turbulent wall jet. Journal of Fluids Engineering, 135 (8), 084502.10.1115/1.4024114Search in Google Scholar

[29] Taliev, V.N. (1963). Ventilation Aerodynamics. Moscow: Gosstroiizdat, 1963.Search in Google Scholar

eISSN:
1335-8871
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing