Accès libre

Circular Samples as Objects for Magnetic Resonance Imaging - Mathematical Simulation, Experimental Results

À propos de cet article

Citez

[1] Joy, M., Scott, G., Henkelman, M. (1989). In vivo imaging of applied electric currents by magnetic resonance imaging. Magnetic Resonance Imaging, 7 (1), 89-94.10.1016/0730-725X(89)90328-7Search in Google Scholar

[2] Callaghan, P.T., Stepisnik, J. (1995). Spatiallydistributed pulsed gradient spin echo NMR using single-wire proximity. Physical Review Letters, 75, 4532-4535.10.1103/PhysRevLett.75.453210059932Search in Google Scholar

[3] Sekino, M., Matsumoto, T., Yamaguchi, K., Iriguchi, N., Ueno, S. (2004). A method for NMR imaging of a magnetic field generated by electric current. IEEE Transactions on Magnetics, 40 (4), 2188-2190.10.1109/TMAG.2004.829818Search in Google Scholar

[4] Mikulka, J., Gescheidtova, E., Bartusek, K. (2012). Soft-tissues image processing: Comparison of traditional segmentation methods with 2D active contour methods. Measurement Science Review, 12 (4), 153-161.10.2478/v10048-012-0023-8Search in Google Scholar

[5] Strbak, O., Kopcansky, P., Timko, M., Frollo, I. (2013). Single biogenic magnetite nanoparticle physical characteristics. A biological impact study. IEEE Transactions on Magnetics, 49 (1), 457-462.10.1109/TMAG.2012.2223201Search in Google Scholar

[6] Gogola, D., Štrbak, O., Krafčik, A., Škratek, M., Frollo, I. (2015). Magnetic resonance imaging of the static magnetic field distortion caused by magnetic nanoparticles: Simulation and experimental verification. Journal of Magnetism and Magnetic Materials, 380, 261-265.10.1016/j.jmmm.2014.10.038Search in Google Scholar

[7] Frollo, I., Andris, P., Gogola, D., Přibil, J., Valkovič, L., Szomolanyi, P. (2012). Magnetic field variations near weak magnetic materials studied by magnetic resonance imaging techniques. IEEE Transactions on Magnetics, 48 (8), 2334-2339.10.1109/TMAG.2012.2191298Search in Google Scholar

[8] Haacke, E.M., Brown, R.W., Thompson, M.R., Venkatesan, R. (1999). Magnetic Resonance Imaging: Physical Principles and Sequence Design (1st ed.). Wiley-Liss.Search in Google Scholar

[9] Marcon, P., Bartusek, K., Dokoupil, Z., Gescheidtova, E. (2012). Diffusion MRI: Mitigation of magnetic field inhomogeneities. Measurement Science Review, 12 (5), 205-212.10.2478/v10048-012-0031-8Search in Google Scholar

[10] Henke, H. (2007). Elektromagnetic Fields, Theory and Using. Springer. (in German)Search in Google Scholar

[11] Sun, Z.H.I., Guo, M., Vleugels, J., Van der Biest, O., Blanpain, B. (2013). Processing of non-ferromagnetic materials in strong static magnetic field. Current Opinion in Solid State and Materials Science, 17 (4), 193-201.10.1016/j.cossms.2013.05.001Search in Google Scholar

[12] Mueller, C., Scheinert, G., Uhlmann, F.H. (2003). Sensitivity estimation for magnetic devices using a double-layer model. International Journal of Applied Electromagnetics and Mechanics, 17 (1-3), 221-230.10.3233/JAE-2003-260Search in Google Scholar

[13] Jianming, J. (1999). Electromagnetic Analysis and Design in Magnetic Resonance Imaging. CRC Press.Search in Google Scholar

[14] Andris, P., Frollo, I. (2011). Optimized measurement of magnetic field maps using nuclear magnetic resonance (NMR). Measurement Science and Technology, 22 (4), 045501.10.1088/0957-0233/22/4/045501Search in Google Scholar

eISSN:
1335-8871
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing