Accès libre

Ultrasound mediated synthesis of CuS nanocrystallites

À propos de cet article

Citez

[1] Duan X.F., Huang Y., Cui Y., Wang J.F., Lieber C. M., Nature, 409 (2001), 66.DuanX.F.HuangY.CuiY.WangJ.F.LieberC. M.Nature40920016610.1038/3505104711343112Search in Google Scholar

[2] Mashford B.S., Stevenson M., Hamilton Z.P.C., Zhou Z., Breen C., Steckel J., Bulovic V., Bawendi M.S., Sullivan C., Kazlas P.T., Nat. Photonics, 7 (2013), 407.MashfordB.S.StevensonM.HamiltonZ.P.C.ZhouZ.BreenC.SteckelJ.BulovicV.BawendiM.S.SullivanC.KazlasP.T.Nat. Photonics7201340710.1038/nphoton.2013.70Search in Google Scholar

[3] Cui Y., Duan X.F., Hu J., Lieber C.M., J. Phys. Chem. B, 104 (2000), 5213.CuiY.DuanX.F.HuJ.LieberC.M.J. Phys. Chem. B1042000521310.1021/jp0009305Search in Google Scholar

[4] Huang M.H., Mao S., Feick H., Yan H.Q., Wu Y.Y., Kind H., Weber E., Russo R., Yang P.D., Science, 292 (2001), 1897.HuangM.H.MaoS.FeickH.YanH.Q.WuY.Y.KindH.WeberE.RussoR.YangP.D.Science2922001189710.1126/science.106036711397941Search in Google Scholar

[5] Gao X.H., Yang L.L., Petros J.A., Marshall F.F., Simons J.W., Nie S.M., Curr. Opin. Biotech., 16 (1) (2005), 63.GaoX.H.YangL.L.PetrosJ.A.MarshallF.F.SimonsJ.W.NieS.M.Curr. Opin. Biotech16120056310.1016/j.copbio.2004.11.00315722017Search in Google Scholar

[6] Smith A.M., Duan H.W., Mohs A.M., Nie S.M., Adv. Drug Deliver. Rev., 60 (11) (2008), 1226.SmithA.M.DuanH.W.MohsA.M.NieS.M.Adv. Drug Deliver. Rev60112008122610.1016/j.addr.2008.03.015264979818495291Search in Google Scholar

[7] Dubertret B., Skourides P., Norris D.J., Noireaux V., Brivanlou A.H., Libchaber A., Science, 298 (5599) (2002), 1759.DubertretB.SkouridesP.NorrisD.J.NoireauxV.BrivanlouA.H.LibchaberA.Science29855992002175910.1126/science.107719412459582Search in Google Scholar

[8] Smith A.M., Dave S., Nie S.M., True L., Gao X., Expert Rev. Mol. Diagn., 6 (2) (2006), 231.SmithA.M.DaveS.NieS.M.TrueL.GaoX.Expert Rev. Mol. Diagn62200623110.1586/14737159.6.2.23116512782Search in Google Scholar

[9] Yue Z., Lisdat F., Parak W.J., Hickey S.G., Tu L., Sabir N., Dorfs D., Bigall N.C., ACS Appl. Mater. Inter., 5 (8) (2013), 2800.YueZ.LisdatF.ParakW.J.HickeyS.G.TuL.SabirN.DorfsD.BigallN.C.ACS Appl. Mater. Inter582013280010.1021/am302866223547912Search in Google Scholar

[10] Sun H., Wu L., Wei W., Qu X., Mater. Today, 16(11) (2013), 433.SunH.WuL.WeiW.QuX.Mater. Today1611201343310.1016/j.mattod.2013.10.020Search in Google Scholar

[11] Chang J.Y., Su L.F., Li C.H., Chang C.C., Lin J.M., Chem. Commun., 48 (2012), 4848.ChangJ.Y.SuL.F.LiC.H.ChangC.C.LinJ.M.Chem. Commun482012484810.1039/c2cc31229h22498756Search in Google Scholar

[12] Jun H.K., Careem M.A., Arof A.K., Renew. Sust. Energ. Rev., 22 (2013), 148.JunH.K.CareemM.A.ArofA.K.Renew. Sust. Energ. Rev22201314810.1016/j.rser.2013.01.030Search in Google Scholar

[13] Kamat P.V., J. Phys. Chem. C, 112 (2008), 18737.KamatP.V.J. Phys. Chem. C11220081873710.1021/jp806791sSearch in Google Scholar

[14] Zhang J., Xiao F.X., Xiao G., Liu B., New J. Chem., 39 (2015), 279.ZhangJ.XiaoF.X.XiaoG.LiuB.New J. Chem39201527910.1039/C4NJ01346HSearch in Google Scholar

[15] Yu J., Zhang J., Jaroniec M., Green Chem., 12 (2010), 1611.YuJ.ZhangJ.JaroniecM.Green Chem122010161110.1039/c0gc00236dSearch in Google Scholar

[16] Leatherdale C.A., Woo W.-K., Mikulec F.V., Bawendi M.G., J. Phys. Chem. B, 106 (31) (2002), 7619.LeatherdaleC.A.WooW.-K.MikulecF.V.BawendiM.G.J. Phys. Chem. B106312002761910.1021/jp025698cSearch in Google Scholar

[17] Walling M.A., Novak J.A., Shepard J.R.E., Int. J. Mol. Sci., 10 (2) (2009), 441.WallingM.A.NovakJ.A.ShepardJ.R.E.Int. J. Mol. Sci102200944110.3390/ijms10020441266066319333416Search in Google Scholar

[18] Nozik A.J., Nat. Nanotechnol., 4 (2009), 548.NozikA.J.Nat. Nanotechnol4200954810.1038/nnano.2009.25319734923Search in Google Scholar

[19] Beard M.C., Knutsen K.P., Yu P., Luther J.M., Song Q., Metzger W.K., Ellingson R.J., Nozik A.J., Nano Lett., 7 (2007), 2506.BeardM.C.KnutsenK.P.YuP.LutherJ.M.SongQ.MetzgerW.K.EllingsonR.J.NozikA.J.Nano Lett72007250610.1021/nl071486l17645368Search in Google Scholar

[20] Schaller R.D., Agranovich V.M., Klimov V.I., Nat. Phys., 1 (2005), 189.SchallerR.D.AgranovichV.M.KlimovV.I.Nat. Phys1200518910.1038/nphys151Search in Google Scholar

[21] Kim M.R., Ma D., J. Phys. Chem. Lett., 6 (2015), 85.KimM.R.MaD.J. Phys. Chem. Lett620158510.1021/jz502227h26263096Search in Google Scholar

[22] Uddin M.J., Daramola D.E., Velasquez E., Dickens T.J., Yan J., Hammel E., Cesano F., Okoli O.I., Phys. Status Solidi-R, 8 (11) (2014), 898.UddinM.J.DaramolaD.E.VelasquezE.DickensT.J.YanJ.HammelE.CesanoF.OkoliO.I.Phys. Status Solidi-R811201489810.1002/pssr.201409392Search in Google Scholar

[23] Yan J., Uddin M.J., Dickens T.J., Daramola D.E., Okoli O.I., Adv. Mater. Interfaces, 1 (2014), 201400075.YanJ.UddinM.J.DickensT.J.DaramolaD.E.OkoliO.I.Adv. Mater. Interfaces1201420140007510.1002/admi.201400075Search in Google Scholar

[24] Lee Y.-L., Chi C.-F., Liau S.-Y., Chem Mater, 22 (2009), 922.LeeY.-L.ChiC.-F.LiauS.-Y.Chem Mater22200992210.1021/cm901762hSearch in Google Scholar

[25] Ratanatawanate C., Bui A., J. Phys. Chem. C, 115 (2011), 6175.RatanatawanateC.BuiA.J. Phys. ChemC, 1152011617510.1021/jp109716qSearch in Google Scholar

[26] Page M., Niitsoo O., Itzhaik Y., Cahen D., Hodes G., Energ. Environ. Sci., 2 (2009), 220.PageM.NiitsooO.ItzhaikY.CahenD.HodesG.Energ. Environ. Sci2200922010.1039/B813740DSearch in Google Scholar

[27] Isac L., Duta A., Kriza A., Manolache S., Nanu M., Thin Solid Films, 515 (2007), 5755.IsacL.DutaA.KrizaA.ManolacheS.NanuM.Thin Solid Films5152007575510.1016/j.tsf.2006.12.073Search in Google Scholar

[28] Wang K.J., Li G.D., Li J.X., Wang Q., Chen J.S., Cryst. Growth Des., 7 (2007), 2265.WangK.J.LiG.D.LiJ.X.WangQ.ChenJ.S.Cryst. Growth Des72007226510.1021/cg060640zSearch in Google Scholar

[29] ROY P., Srivastava S.K., Cryst. Growth Des., 6 (2006), 1921.RoyP.SrivastavaS.K.Cryst. Growth Des62006192110.1021/cg060134+Search in Google Scholar

[30] Sagade A.A., Sharma R., Sensor. Actuat. B-Chem., 133(2008), 135.SagadeA.A.SharmaR.Sensor. Actuat. B-Chem133200813510.1016/j.snb.2008.02.015Search in Google Scholar

[31] Zhao Y., Pan H., Lou Y., Qiu X., Zhu J., Burda C., J. Am. Chem. Soc., 131 (2009), 4253.ZhaoY.PanH.LouY.QiuX.ZhuJ.BurdaC.J. Am. Chem. Soc1312009425310.1021/ja805655bSearch in Google Scholar

[32] Brelle M.C., Torres-Martinez C.L., McNulty J.C., Mehra R.K., Zhang J.Z., Pure Appl. Chem., 72 (2000), 101.BrelleM.C.Torres-MartinezC.L.McNultyJ.C.MehraR.K.ZhangJ.Z.Pure Appl. Chem72200010110.1351/pac200072010101Search in Google Scholar

[33] Zhang F., Wong S.S., Chem. Mater., 21 (2009), 4541.ZhangF.WongS.S.Chem. Mater212009454110.1021/cm901492fSearch in Google Scholar

[34] Parkin I.P., Chem. Soc. Rev., 25 (1996), 199.ParkinI.P.Chem. Soc. Rev25199619910.1039/cs9962500199Search in Google Scholar

[35] Ni Y.H., Wang F., Liu H.J., Miao Q.A., Xu Z., Hong J.M., Ma X.A., Chinese J. Inorg. Chem., 19 (2003), 1197.NiY.H.WangF.LiuH.J.MiaoQ.A.XuZ.HongJ.M.MaX.A.Chinese J. Inorg. Chem1920031197Search in Google Scholar

[36] Liao X.H., Zhu J.J., Chen H.Y., Mater. Sci. Eng. B-Adv., 85 (2001), 85.LiaoX.H.ZhuJ.J.ChenH.Y.Mater. Sci. Eng. B-Adv8520018510.1016/S0921-5107(01)00647-XSearch in Google Scholar

[37] Liao X.H., Chen N.Y., Xu S., Yang S.B., Zhu J.J., J. Cryst. Growth, 252 (2003), 593.LiaoX.H.ChenN.Y.XuS.YangS.B.ZhuJ.J.J. Cryst. Growth252200359310.1016/S0022-0248(03)01030-3Search in Google Scholar

[38] Larsen T.H., Sigman M., Ghezelbash A., Doty R.C., Korgel B.A., J. Am. Chem. Soc., 125 (2003), 5638.LarsenT.H.SigmanM.GhezelbashA.DotyR.C.KorgelB.A.J. Am. Chem. Soc1252003563810.1021/ja034208712733895Search in Google Scholar

[39] Abdelhady A.L., Ramasamy K., Malik M.A., Brien P.O., Haigh S.J., Raftery J., J. Mater. Chem., 21 (2011), 17888.AbdelhadyA.L.RamasamyK.MalikM.A.BrienP.O.HaighS.J.RafteryJ.J. Mater. Chem2120111788810.1039/c1jm13277fSearch in Google Scholar

[40] Lu Q.Y., Gao F., Zhao D.Y., Nano Lett., 2 (2002), 725.LuQ.Y.GaoF.ZhaoD.Y.Nano Lett2200272510.1021/nl025551xSearch in Google Scholar

[41] Zhang P., Gao L., J. Mater. Chem., 13 (2003), 2007.ZhangP.GaoL.J. Mater. Chem132003200710.1039/b305584aSearch in Google Scholar

[42] Ji H.M., Cao J.M., Feng J., Chang X., Ma X.J., Liu J.S., Zheng M.B., Mater. Lett., 59 (2005), 3169.JiH.M.CaoJ.M.FengJ.ChangX.MaX.J.LiuJ.S.ZhengM.B.Mater. Lett592005316910.1016/j.matlet.2005.05.046Search in Google Scholar

[43] Gorai S., Ganguli D., Chaudhuri S., Cryst. Growth Des., 5 (2005), 875.GoraiS.GanguliD.ChaudhuriS.Cryst. Growth Des5200587510.1021/cg0496787Search in Google Scholar

[44] Leidinger P., Popescu R., Gerthsen D., Luns-Dorf H., Feldmann C., Nanoscale, 3 (2011), 2544.LeidingerP.PopescuR.GerthsenD.Luns-DorfH.FeldmannC.Nanoscale32011254410.1039/c1nr10076aSearch in Google Scholar

[45] Ohtani T., Motoki M., Koh K., Ohshima K., Mater. Res. Bull., 30 (1995), 1495.OhtaniT.MotokiM.KohK.OhshimaK.Mater. Res. Bull301995149510.1016/0025-5408(95)00155-7Search in Google Scholar

[46] Godocikova E., Balaz P., Criado J.M., Real C., Gock E., Thermochim. Acta, 440 (2006), 19.GodocikovaE.BalazP.CriadoJ.M.RealC.GockE.Thermochim. Acta44020061910.1016/j.tca.2005.09.015Search in Google Scholar

[47] Suslick K.S., Science, 247 (1990), 1439.SuslickK.S.Science2471990143910.1126/science.247.4949.1439Search in Google Scholar

[48] Gedanken A., Ultrason. Sonochem., 11 (2004), 47.GedankenA.Ultrason. Sonochem1120044710.1016/j.ultsonch.2004.01.037Search in Google Scholar

[49] Kumar R.V., Palchik O., Koltypin Y., Diamant Y., Gedanken A., Ultrason. Sonochem., 9 (2002), 65.KumarR.V.PalchikO.KoltypinY.DiamantY.GedankenA.Ultrason. Sonochem920026510.1016/S1350-4177(01)00100-6Search in Google Scholar

[50] Wang H., Zhang J.-R., Zhao X.-N., Xu S., Zhu J.-J., Mater. Lett., 55 (2002), 253.WangH.ZhangJ.-R.ZhaoX.-N.XuS.ZhuJ.-J.Mater. Lett55200225310.1016/S0167-577X(01)00656-5Search in Google Scholar

[51] Xu J.-Z., Xu S., Geng J., Li G.-X., Zhu J.-J., Ultrason. Sonochem., 13 (2006), 451.XuJ.-Z.XuS.GengJ.LiG.-X.ZhuJ.-J.Ultrason. Sonochem13200645110.1016/j.ultsonch.2005.09.00316288896Search in Google Scholar

[52] Xu H., Wang W., Zhu W., Mater. Lett., 60 (2006), 2203.XuH.WangW.ZhuW.Mater. Lett602006220310.1016/j.matlet.2005.12.098Search in Google Scholar

[53] Kristl M., Hojnik N., Gyergyek S., Drofenik M., Mater. Res. Bull., 48 (2013), 1184.KristlM.HojnikN.GyergyekS.DrofenikM.Mater. Res. Bull482013118410.1016/j.materresbull.2012.12.020Search in Google Scholar

[54] Liu Y., Mater. Chem. Phys., 102 (2007), 201.LiuY.Mater. Chem. Phys102200720110.1016/j.matchemphys.2006.12.004Search in Google Scholar

[55] Chaudhary G. R., Bansal P., Mehta S.K., Chem. Eng. J., 243 (2014), 217.ChaudharyG. R.BansalP.MehtaS.K.Chem. Eng. J243201421710.1016/j.cej.2014.01.012Search in Google Scholar

[56] Liu J., Xue D., J. Mater. Chem., 21 (2011), 223.LiuJ.XueD.J. Mater. Chem21201122310.1039/C0JM01714KSearch in Google Scholar

[57] Chen H., Yu S.M., Shin D.W., Yoo J.B., Nanoscale Res. Lett., 5 (2010), 217.ChenH.YuS.M.ShinD.W.YooJ.B.Nanoscale Res. Lett5201021710.1007/s11671-009-9468-6289360720651912Search in Google Scholar

[58] Sobhani A., Niasari M.S., Mashkani M.H., J. Clust. Sci., 23 (2012), 1143.SobhaniA.NiasariM.S.MashkaniM.H.J. Clust. Sci232012114310.1007/s10876-012-0509-4Search in Google Scholar

eISSN:
2083-134X
Langue:
Anglais