Accès libre

A few results on some nonlinear parabolic problems in Orlicz-Sobolev spaces

  
16 mai 2019
À propos de cet article

Citez
Télécharger la couverture

In this paper, we present our results (see our papers), which concern the existence of the renormalized solutions for equations of the type:

b(x,u)t-div(a(x,t,u,u))-div(Φ(x,t,u))=finQ=Ω×(0,T),$${{\partial b(x,u)} \over {\partial t}} - {\rm{div}}\left( {a(x,t,u,\nabla u)} \right) - {\rm{div}}\left( {\Phi \left( {x,t,u} \right)} \right) = f\,\,\,{\rm{in}}\,Q = \Omega \times (0,T),$$

where b(x, ·) is a strictly increasing C1-function for any x ∈ Δ, a(x, t, s, ξ) and Φ(x, t, s) are a Carathéodory functions. The function f is in L1(Q).