Accès libre

Control of the Development of Swirling Airflow Dynamics and Its Impact on Biomass Combustion Characteristics

À propos de cet article

Citez

1. Gupta, A.K., Lilley, D.G., & Syred, N. (1984). Swirl Flows. UK: Abacus Press. Search in Google Scholar

2. Meier, W., Duan, X.R., & Weigand, P. (2006). Investigations of swirl flames in a gas turbine model combustor: Turbulence-chemistry interactions. Combustion and Flame, 144, 225-236.10.1016/j.combustflame.2005.07.009Search in Google Scholar

3. Külsheimer, C., & Büchner, H. (2002). Combustion dynamics of turbulent swirling flames, Combustion and Flame, 131, 70-84.10.1016/S0010-2180(02)00394-2Search in Google Scholar

4. Syred, N., & Beer, J.M. (1974). Combustion in swirling flows: A review. Combustion and Flame, 23(2), 143-201.10.1016/0010-2180(74)90057-1Search in Google Scholar

5. Haber, L.Ch. (2003). Investigation of Dynamics in Turbulent Swirling Flows Aided by Linear Stability Analysis. Dissertation of Doctor of Philosophy. Virginia Polytechnic Institute and State University.Search in Google Scholar

6. Chen, J., Haynes, B.S., & Fletcher, D.F. (1999). A numerical and experimental study of tangentially injected swirling pipe flows. In Second International Conference on CFD in the Minerals and Process Industries CSIRO, 6-8 December 1999 (pp. 485-490). Melbourne, Australia.Search in Google Scholar

7. Yang, Y., Kær, S., & Yin, Ch. (2011). Numerical study and validation of one swirling flame. In Proceeding of the European Combustion Meeting, 28 June-1 July 2011 (pp. 1-3). Denmark: Aalborg University.Search in Google Scholar

8. Saediamiri, M., Birouk, M., & Kozinski, J. (2014). On the stability of a turbulent nonpremixed biogas flame: Effect of low swirl strength. Combustion and Flame, 161, 1326-1336.10.1016/j.combustflame.2013.11.002Search in Google Scholar

9. Abricka, M., Barmina, I., Valdmanis, R., & Zake, M. (2014). Experimental and numerical study of swirling flows and flame dynamics. Latvian Journal of Physics and Technical Sciences, 51(4), 25-40.10.2478/lpts-2014-0021Search in Google Scholar

10. Naskar, M., Roy, D., & Majumder, S. (2010). Numerical analysis and control of the recirculation bubble strength of turbulent confined jet flow using inlet swirl. International Journal of Engineering Science and Technology, 2(4), 1-16.10.4314/ijest.v2i4.59192Search in Google Scholar

11. Sweeney, M.S., Hochgreb, S., Dunn, M.J., & Barlow, R.S. (2012). The structure of turbulent stratified and premixed methane/air flames II: Swirling flows. Combustion and Flame, 159, 2912-2929.10.1016/j.combustflame.2012.05.014Search in Google Scholar

12. Driscoll, J.F., & Temme, J. (2011). Role of swirl in flame stabilization. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011-108, 4-7 January 2011 (pp. 1-11). USA, Orlando, Florida.10.2514/6.2011-108Search in Google Scholar

13. Stöhr, M., Sadanandan, R., & Meier, W. (2009). Experimental study of unsteady flame structures of an oscillating swirl flame in a gas turbine model combustor. Proceedings of Combustion Institute, 32(2), 2925-2932.10.1016/j.proci.2008.05.086Search in Google Scholar

14. Landenfeld, T., Kremer, A., Hassel, E.P., Janicka, J., & Schafer, T. (1998). Laser-diagnostic and numerical study of strongly swirling natural gas flames. In Proceedings of 27th Symposium (International) on Combustion, 2-7 August 1998 (pp. 1023-1029). Pittsburg.10.1016/S0082-0784(98)80502-XSearch in Google Scholar

eISSN:
0868-8257
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics