1. bookVolume 54 (2017): Edition 1 (February 2017)
Détails du magazine
License
Format
Magazine
eISSN
2255-8896
Première parution
18 Mar 2008
Périodicité
6 fois par an
Langues
Anglais
Accès libre

The Analysis of Non-Newtonian Vibro-Impact Processes in Tube Constructions and Systems with Parallel Impact Pairs

Publié en ligne: 30 Mar 2017
Volume & Edition: Volume 54 (2017) - Edition 1 (February 2017)
Pages: 51 - 65
Détails du magazine
License
Format
Magazine
eISSN
2255-8896
Première parution
18 Mar 2008
Périodicité
6 fois par an
Langues
Anglais

1. Krupenin, V.L. (1983). Vibration of the systems with large threshold elastic forces. Mechanics of Solids, 4, 76–84.Search in Google Scholar

2. Astashev, V. K. (1965). Periodic Motion of an Elastic Rod with Limiters. The Dynamics of Machines with Given the Elasticity and Masses Variability. Moscow: Nauka.Search in Google Scholar

3. Krupenin, V.L (1984). Calculation of mechanisms with threshold nonlinearities by a singularisation method. Mashinovedenie, 1, 6–12. (In Russian).Search in Google Scholar

4. Babitsky, V.I., & Krupenin, V.L. (2001). Vibration of Strongly Nonlinear Discontinuous Systems. Berlin: Springer-Verlag.10.1007/978-3-540-44488-6Search in Google Scholar

5. Krupenin, V.L (2014). Vibroimpulsive processes in the family of elastic systems with boundary elements interacting through non-Newtonian impacts. Journal of Machinery Manufacture and Reliability, 43(4). 261–269. DOI: 10.3103/S1052618814040098.10.3103/S1052618814040098Search in Google Scholar

6. Krupenin, V.L (2010). The representation of periodic vibration–impact processes via pulse–phase motion parameters. Journal of Machinery Manufacture and Reliability, 39(1), 28–34. DOI: 10.3103/S1052618810010048.10.3103/S1052618810010048Search in Google Scholar

7. Krupenin, V.L. (2006). Calculation of vibration processes in two-dimensional lattices. Journal of Machinery Manufacture and Reliability, 4, 26–34.Search in Google Scholar

8. Astashev, V.K., & Krupenin, V.L. (1998). Waves in distributed and discrete vibroimpact systems and in strongly non-linear mediums. Journal of Machinery Manufacture and Reliability, 5, 13–30.Search in Google Scholar

9. Krupenin, V.L. (1998). Vibro-impact processes in systems with large number impact pairs and distributed impact elements. In Dynamics of Vibro-Impact Systems. Euromech Colloquium 386, 15–18 September 1998. England: Loughborough University.Search in Google Scholar

10. Babitsky, V.I., Krupenin, V.L., & Veprik, A.M. (1988). Vibroimpact phenomena due to limited oscillations of one-dimensional elasto-connected particles. Dokl. AN USSR (Proc. USSR Academy of Sciences), 3(3), 562–566.Search in Google Scholar

11. Astashev, V.K., Krupenin, V.L., & Tresvyatskii, A.H. (1996). Experimental study of impacts synchronization in distributed systems with a variable number of impacts. Journal of Machinery Manufacture and Reliability, 2, 96–101.Search in Google Scholar

12. Viba, J., & Lavendelis, E. (2006). Algorithm of synthesis of strongly non-linear mechanical systems. In Industrial Engineering - Innovation as Competitive Edge for SME, 22 April 2006 (pp. 95–98). Tallinn, Estonia.Search in Google Scholar

13. Krupenin, V.L. (2011). Representation of vibro-impact processes by physical parameters defining the movement “momentum – phase”, Part II: Calculation of beam and tubular structures. Bulletin of Scientific and Technological Development, 10(50), 25–30.Search in Google Scholar

14. Ibrahim, R.A. (2009). Vibro-Impact Dynamics. Berlin: Springer-Verlag.10.1007/978-3-642-00275-5Search in Google Scholar

15. Luo, A.C.J., & Guo, Y. (2013). Vibro-Impact Dynamics. Chichester, West Sussex, UK: A John Wiley & Sons, Ltd.10.1002/9781118402924Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo