À propos de cet article

Citez

1. Safi, I. (2000). Recent aspects concerning DC reactive magnetron sputtering of thin films. Surface & Coatings Technology, 127 (2–3), 203–219.10.1016/S0257-8972(00)00566-1Search in Google Scholar

2. Berman, D., Erdemir, A., and Sumant, V. A. (2013). Few layer graphene to reduce wear and friction on sliding steel surfaces. Elsevier, Carbon 54, 454–459.10.1016/j.carbon.2012.11.061Search in Google Scholar

3. Chan, Y. H., Huang, C. F., Ou, K. L., and Peng, P. W. (2011). Mechanical properties and antibacterial activity of copper doped diamond-like carbon films. Surface & Coatings Technology. 206 (6), 1037–1040.10.1016/j.surfcoat.2011.07.034Search in Google Scholar

4. Cabioc’h, T., Naudon, A., Jaouen, M., Thiaudiére, D., and Babonneau, D. (1999). Cosputtering C-Cu thin film synthesis: Microstructural study of copper precipitates encapsulated into a carbon matrix. Philosophical Magazine Part B, 79 (3), 501–516.10.1080/13642819908206423Search in Google Scholar

5. Musil, J., Louda, M., Soukup, Z., and Kubásek, M. (2008). Relationship between mechanical properties and coefficient of friction of sputtered a-C/Cu composite thin films. Diamond & Related Materials, 17 (11), 1905–1911.10.1016/j.diamond.2008.04.009Search in Google Scholar

6. Mitin, V., Sharipov, E., and Mitin, A. (2006). High deposition rate magnetrons – innovative coating technology: Key elements and advantages. Surface Engineering, 22 (1), 1–6.Search in Google Scholar

7. Fernández, B., Pereiro, R., Sanz-Medel, A. (2010). Glow discharge analysis of nanostructured materials and nanolayers. Analytica Chimica Acta, 679 (1–2), 7–16.10.1016/j.aca.2010.08.03120951852Search in Google Scholar

eISSN:
0868-8257
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics