1. bookVolume 65 (2017): Edition 2 (June 2017)
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Mathematical modeling of groundwater contamination with varying velocity field

Publié en ligne: 20 Mar 2017
Volume & Edition: Volume 65 (2017) - Edition 2 (June 2017)
Pages: 192 - 204
Reçu: 07 Apr 2016
Accepté: 08 Sep 2016
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais

Aral, M.M., Liao, B., 1996. Analytical solutions for two-dimensional transport equation with time-dependent dispersion coefficients. J. Hydrol. Eng., 1, 20–32.10.1061/(ASCE)1084-0699(1996)1:1(20)Search in Google Scholar

Barry, D.A., Sposito, G., 1989. Analytical solution of a convection-dispersion model with time-dependent transport coefficients. Water Resour. Res., 25, 2407–2416.10.1029/WR025i012p02407Search in Google Scholar

Basha, H.A., El-Habel, F.S., 1993. Analytical solution of the one-dimensional time dependent transport equation. Water Resour. Res., 29, 3209–3214.10.1029/93WR01038Search in Google Scholar

Batu, V., 2006. Applied Flow and Solute Transport Modeling in Aquifers: Fundamental Principles and Analytical and Numerical Methods. CRC, Boca Raton, FL.10.1201/9781420037470Search in Google Scholar

Bear, J., 1972. Dynamics of Fluids in Porous Media. Elsevier, New York, USA.Search in Google Scholar

Carnahan, B., Luther, H.A., Wilkes, J.O., 1969. Applied Numerical Methods. Wiley, New York, pp. 429–530.Search in Google Scholar

Chaudhari, N.M., 1971. An improved numerical technique for solving multidimensional miscible displacement equation. Soc. Petrol. Engng J., 11, 277–284.10.2118/2982-PASearch in Google Scholar

Chen, J.S., Lai, K.H., Liu, C.W., Ni, C.F., 2012. A novel method for analytically solving multi-species advective-dispersive transport equations sequentially coupled with first-order decay reactions. J. Hydrol., 420–421, 191–204.10.1016/j.jhydrol.2011.12.001Search in Google Scholar

Crank, J., 1975. The Mathematics of Diffusion. 2nd ed. Oxford Univ. Press, London.Search in Google Scholar

De Smedt, F., Wierenga, P.J., 1977. Simulation of water and solute transport in unsaturated soils. In: Proc. 3rd Int. Symp. on Hydrology, Fort Collins. CO.Search in Google Scholar

Dudley, L.M., McLean, J.E., Furat. T.H., Jurinak, J.J., 1991. Sorption of cadmium copper from an acid mine waste extract by two calcareous soils: column studies. Soil Sci., 151, 121–135.10.1097/00010694-199102000-00002Search in Google Scholar

Ebach, E.H., White, R., 1958. Mixing of fluids flowing through beds of packed solids. J. American Institute of Chemical Eng., 4, 161–164.10.1002/aic.690040209Search in Google Scholar

Freeze, R.A., Cherry, J.A., 1979. Groundwater. Prentice-Hall, Englewood Cliffs, New Jersey.Search in Google Scholar

Fried, J.J., Combarnous, M.A., 1971. Dispersion in porous media. Adv. Hydrosci., 7, 169–281.10.1016/B978-0-12-021807-3.50008-4Search in Google Scholar

Gelhar, L.W., Welty, W., Rehfeldt, K.R., 1992. A critical review of data on field-scale dispersion in aquifers. Water Resour. Res., 28, 1955–1974.10.1029/92WR00607Search in Google Scholar

Ghosh, N.C., Sharma, K.D., 2006. Groundwater Modelling and Management. Capital Publishing Company, New-Delhi.Search in Google Scholar

Gillham, R.W., Cherry, J.A., 1982. Contaminant migration in saturated unconsolidated geologic deposits. Geological Society of America, Special Paper, 189, 31–62.10.1130/SPE189-p31Search in Google Scholar

Guerrero, J.S.P., Skaggs, T.H., 2010. Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients. J. Hydrol., 390, 57–65.10.1016/j.jhydrol.2010.06.030Search in Google Scholar

Guerrero, J.S.P., Pontedeiro, E.M., van Genuchten, M.T., Skaggs, T.H., 2013. Analytical solutions of the one-dimensional advection–dispersion solute transport equation subject to time-dependent boundary conditions. Chemical Eng. J., 221, 487–491.10.1016/j.cej.2013.01.095Search in Google Scholar

Huang, K., van Genuchten, M.T., Zhang, R., 1996. Exact solutions for one-dimensional transport with asymptotic scale-dependent dispersion. Appl. Math. Modelling, 20, 298–308.10.1016/0307-904X(95)00123-2Search in Google Scholar

Huang, G., Huang, Q., Zhan, H., 2006. Evidence of one-dimensional scale-dependent fractional advection dispersion. J. Contam. Hydrol., 85, 53–71.10.1016/j.jconhyd.2005.12.007Search in Google Scholar

Jain, S.K., Agarwal, P.K., Singh, V.P., 2007. Hydrology and Water Resources of India. Springer, The Netherlands, p. 87.Search in Google Scholar

Lantz, R.B., 1971. Quantitative evaluation of numerical diffusion truncation error. Society Petrole. Engg. J., 11, 315–320.10.2118/2811-PASearch in Google Scholar

Mickley, H.S., Sherwood, T.K., Reed, C.E., 1957. Applied Mathematics in Chemical Engineering. McGraw-Hill, New York.Search in Google Scholar

Mitchell, J.K., 1976. Fundamentals of Soil Behavior. Wiley, New York.Search in Google Scholar

Moldrup, P., Paulsen, T.G., Rolston, D.E., Yamaguchi, T., Hansen, J.A., 1994. Integrated flux model for unsteady transport of trace organic chemicals in soils. Soil Sci., 157, 137–152.10.1097/00010694-199403000-00002Search in Google Scholar

Notodarmojo, S., Ho, G.E., Scott, W.D., Davis, G.B., 1991. Modelling phosphorus transport in soils and groundwater with two-consecutive reactions. Water Res., 25, 10, 1205–1216.10.1016/0043-1354(91)90059-YSearch in Google Scholar

Ogata, A., Banks, R.B., 1961. A solution of differential equation of longitudinal dispersion in porous media. Geological Survey Professional Paper, 411-A.10.3133/pp411ASearch in Google Scholar

Roberts, D.L., Selim, M.S., 1984. Comparative study of six explicit and two implicit finite difference schemes for solving one-dimensional parabolic partial differential equations. Int. J. Numer. Methods Eng., 20, 817–844.10.1002/nme.1620200504Search in Google Scholar

Scheidegger, A.E., 1957. The Physics of Flow through Porous Media. University of Toronto Press, Toronto.10.3138/9781487583750Search in Google Scholar

Scheidegger, A.E., 1961. General theory of dispersion in porous media. J. Geophys. Res., 66, 10, 3273–3278.10.1029/JZ066i010p03273Search in Google Scholar

Sharma, H.D., Reddy, K.R., 2004. Geo-Environmental Engineering. Wiley, New York.Search in Google Scholar

Singh, P., Singh, V.P., 2001. Snow and Glacier Hydrology. Kluwer Academic Publishers, Amsterdam, The Netherlands, p. 78.Search in Google Scholar

Singh, M.K., Singh, V.P., Singh, P., Shukla, D., 2009. Analytical solution for conservative solute transport in one-dimensional homogeneous porous formation with time-dependent velocity. J. Engg. Mech., 135, 9, 1015–1021.10.1061/(ASCE)EM.1943-7889.0000018Search in Google Scholar

Singh, M.K., Ahamad, S., Singh, V.P., 2012. Analytical solution for one-dimensional solute dispersion with time-dependent source concentration along uniform groundwater flow in a homogeneous porous formation. J. Eng. Mech., 138, 8, 1045–1056, DOI: 10.1061/(ASCE)EM.1943-7889.0000384.10.1061/(ASCE)EM.1943-7889.0000384Search in Google Scholar

Smith, G.D., 1978. Numerical Solution of Partial Differential Equations: Finite Difference Methods. 2nd ed. Oxford University Press, Oxford.Search in Google Scholar

Towler, B.F., Yang, R.Y.K., 1979. On comparing the accuracy of some finite-difference methods for parabolic partial differential equations. Int. J. Numer. Methods Eng., 14, 1021–1035.10.1002/nme.1620140706Search in Google Scholar

van Genuchten, M.T., Gray, W.G., 1978. Analysis of some dispersion corrected numerical schemes for solution of the transport equation. Int. J. Num. Methods Eng., 12, 387–404.10.1002/nme.1620120302Search in Google Scholar

van Genuchten, M.T., Leij, F.J., Skaggs, T.H., Toride, N., Bradford, S.A., Pontedeiro, E.M., 2013. Exact analytical solutions for contaminant transport in rivers. 1. The equilibrium advection-dispersion equation. J. Hydrol. Hydromech., 61, 2, 146–160.10.2478/johh-2013-0020Search in Google Scholar

You, K., Zhan, H., 2013. New solutions for solute transport in a finite column with distance-dependent dispersivities and time-dependent solute sources. J. Hydrol., 487, 87–97.10.1016/j.jhydrol.2013.02.027Search in Google Scholar

Zamani, K., Bombardelli, F.A., 2014. Analytical solutions of nonlinear and variable-parameter transport equations for verification of numerical solvers. Environ. Fluid Mech., 14, 711–742. DOI: 10.1007/s10652-013-9325-0.10.1007/s10652-013-9325-0Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo