1. bookVolume 65 (2017): Edition 2 (June 2017)
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Lattice Boltzmann method used to simulate particle motion in a conduit

Publié en ligne: 20 Mar 2017
Volume & Edition: Volume 65 (2017) - Edition 2 (June 2017)
Pages: 105 - 113
Reçu: 21 Jun 2016
Accepté: 02 Dec 2016
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais

Abbot, J.E., Francis, J.R.D., 1977. Saltation and suspension trajectories of solid grains in a water stream. Philos. Trans. R. Soc. London A, 284, 225–254.10.1098/rsta.1977.0009Search in Google Scholar

Aidun C.K., Lu, Y., Ding, E.-J., 1998. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech., 373, 287–311.10.1017/S0022112098002493Search in Google Scholar

Allen, M.P., Tildesley, D.J., 1987. Computer Simulation of Liquids. Clarendon, Oxford.Search in Google Scholar

Ancey, C., Heyman, J., 2014. A microstructural approach to bed load transport: mean behaviour and fluctuations of particle transport rates. J. Fluid Mech., 744, 129–168.10.1017/jfm.2014.74Search in Google Scholar

Ansumali, S., Karlin, I.V., 2002. Entropy function approach to the lattice Boltzmann method. J. Stat. Phys., 107, 291–308.10.1023/A:1014575024265Search in Google Scholar

Bhatnagar, P.L., Gross, E.P., Krook, M., 1954. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev., 94, 3, 511–525.10.1103/PhysRev.94.511Search in Google Scholar

Bialik, R.J., Nikora, V.I., Karpiński, M., Rowiński, P.M., 2015. Diffusion of bedload particles in openchannels flows: distribution of travel times and second-order statistics of particle trajectories. Env. Fluid Mech., 15, 1281–1292.10.1007/s10652-015-9420-5Search in Google Scholar

Bialik, R.J., Nikora V., Rowiński, P.M., 2012. 3D Lagrangian modelling of saltating particles diffusion in turbulent water flow. Acta Geophys., 60, 6, 1639–1660.10.2478/s11600-012-0003-2Search in Google Scholar

Campagnol, J., Radice, A., Ballio, F., Nikora, V., 2015. Particle motion and diffusion at weak bed load: accounting for unsteadiness effects of entrainment and disentrainment. J. Hydr. Res., 53, 5, 633–648.10.1080/00221686.2015.1085920Search in Google Scholar

Chára, Z., Kysela, B., Dolanský, J., 2016. Saltation movement of large spherical particles. In: Proc. Int. Conf. of Numerical Analysis and Applied Mathematics 2016, Rodhes, Greece.10.1063/1.4992191Search in Google Scholar

Chen, S., Doolen, G., 1998. Lattice Boltzmann method for fluid-flows. Ann. Rev. Fluid Mech., 30, 329–364.10.1146/annurev.fluid.30.1.329Search in Google Scholar

Czernuszenko, W., 2009. Model of particle–particle interaction for saltating grains in water. Arch. Hydro-Eng. Env. Mech., 56, 101–120.Search in Google Scholar

Dolanský, J., 2014. Simulation of particle motion in a closed conduit validated against experimental data. In: EFM14-Experimental Fluid Mechanics 2014, Český Krumlov (CZ). EPJ Web of Conferences, vol. 92, pp. 115–120.10.1051/epjconf/20159202012Search in Google Scholar

Fathel, S., Furbish, D., Schmeeckle, M., 2015. Experimental evidence of statistical ensemble behaviour in bed load sediment transport. J. Geophys. Res. Earth Surf., 120, 11, 2298–2317.10.1002/2015JF003552Search in Google Scholar

Feng, Z.-G., Michaelides, E.E., 2004. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J. Comp. Phys., 195, 2, 602–628.10.1016/j.jcp.2003.10.013Search in Google Scholar

Frisch, U., Hasslacher, B., Pomeau, Y., 1986. Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett., 56, 1505–1508.10.1103/PhysRevLett.56.1505Search in Google Scholar

Izquierdo, S., Martínez-Lera, P., Fueyo, N., 2009. Analysis of open boundary effects in unsteady lattice Boltzmann simulations. Comput. Math. Appl., 58, 914–921.10.1016/j.camwa.2009.02.014Search in Google Scholar

Ladd, A.J.C., 1994. Particles generally pass through different stages of motion such as rolling, saltation or suspension. J. Fluid Mech., 271, 311–339.10.1017/S0022112094001783Search in Google Scholar

Lallemand, P., Luo, L.-S., 2003. Lattice Boltzmann method for moving boundaries. J. Comp. Phys., 184, 406–421.10.1016/S0021-9991(02)00022-0Search in Google Scholar

Latt, J., Chopard, B., 2006. Lattice Boltzmann method with regularized pre-collision distribution functions. Math. Comput. Simul., 72, 165–168.10.1016/j.matcom.2006.05.017Search in Google Scholar

Liu, H., Ding, Y., Li, M., Lin P., Yu, M.H., Shu, A.P., 2015. A hybrid lattice Boltzmann method–Finite Difference Method model for sediment transport and riverbed deformation. Riv. Res. App., 31, 4, 447–456.10.1002/rra.2735Search in Google Scholar

Lukerchenko, N., Chára, Z., Vlasák, P., 2006. 2D numerical model of particle-bed collision in fluid-particle flows over bed. J. Hydraul. Research, 44, 1, 70–78.10.1080/00221686.2006.9521662Search in Google Scholar

Lukerchenko, N., Piatsevich, S., Chára, Z., Vlasák, P., 2009. 3D numerical model of the spherical particle saltation in a channel with a rough fixed bed, J. Hydrol. Hydromech., 57, 2, 100–112.10.2478/v10098-009-0009-xSearch in Google Scholar

Karlin, I.V., Ansumali, S., Chikatamarla, 2006. Elements of the lattice Boltzmann method I: Linear advection equation. Commun. Comput. Phys., 1, 616–655.Search in Google Scholar

Krithivasan, S., Wahal, S., Ansumali, S., 2014. Diffused bounce-back condition and refill algorithm for the lattice Boltzmann method. Phys. Rev. E 89, 033313.10.1103/PhysRevE.89.03331324730973Search in Google Scholar

Martin, I.M.B., Marinescu, D.C., Lynch, R.E., Baker, T.S., 1997. Identification of spherical virus particles in digitized images of entire micrographs. J. Struct. Biol., 120, 146–157.10.1006/jsbi.1997.39019417979Search in Google Scholar

Martinez, D.O., Matthaeus, W.H., Chen, S., 1994. Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics. Phys. Fluids, 6, 1285.10.1063/1.868296Search in Google Scholar

McNamara, G.R., Zanetti, G., 1988. Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett., 61, 2332–2335.10.1103/PhysRevLett.61.233210039085Search in Google Scholar

Niño, Y., García, M., 1994. Gravel saltation: 2. Modeling. Water Resources Res., 30, 6, 1915–1924.10.1029/94WR00534Search in Google Scholar

Ryu, S., Ko, S., 2012. A comparative study of lattice Boltzmann and volume of fluid method for two dimensional multiphase flows. Nucl. Eng. Tech., 44, 6, 623–638.10.5516/NET.02.2011.025Search in Google Scholar

Succi, S., 2001. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon, Oxford.Search in Google Scholar

Vlasák, P., Kysela, B., Chára, Z., 2012. Flow structure of coarse-grained slurry in a horizontal pipe. J. Hydrol. Hydromech., 60, 115–124.10.2478/v10098-012-0010-7Search in Google Scholar

Vlasák, P., Chára, Z., Kysela, B., Konfršt, J., 2013. Coarse grained particle flow in circular pipe. In: Proc. ASME Fluids Engineering Div. Summer Meeting, Incline Village, USA, vol. 1C.10.1115/FEDSM2013-16452Search in Google Scholar

Vlasák, P., Kysela, B., Chára, Z., 2014. Fully stratified particle-laden flow in horizontal circular pipe. Part. Sci. Tech., 32, 2, 179–185.10.1080/02726351.2013.840705Search in Google Scholar

Yan, Y.Y., Zu, Y.Q., Dong, B., 2011. LBM, a useful tool for mesoscale modelling of single and multi-phase flow. Appl. Therm. Eng., 31, 649–655.10.1016/j.applthermaleng.2010.10.010Search in Google Scholar

Wiberg, P.L., Smith, J.D., 1985. A theoretical model for saltating grains in water. J. Geophys. Res., 90, C4, 7341–7354.10.1029/JC090iC04p07341Search in Google Scholar

Yu, Z., Fan, L.-S., 2010. Lattice Boltzmann method for simulating particle-fluid interactions. Particuology, 8, 539–543.10.1016/j.partic.2010.07.012Search in Google Scholar

Yu, D., Mei, R., Shyy, W., 2005. Improved treatment of the open boundary in the method of lattice Boltzmann equation. Progr. Comput. Fluid Dyn., 5, 3–12.10.1504/PCFD.2005.005812Search in Google Scholar

Zou, Q., He, X., 1996. On pressure and velocity flow boundary conditions and bounceback for the lattice Boltzmann BGK model. Phys. Fluids, 9, 1591–1598.10.1063/1.869307Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo