1. bookVolume 65 (2017): Edition 2 (June 2017)
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Pre-event water contributions and streamwater residence times in different land use settings of the transboundary mesoscale Lužická Nisa catchment

Publié en ligne: 20 Mar 2017
Volume & Edition: Volume 65 (2017) - Edition 2 (June 2017)
Pages: 154 - 164
Reçu: 05 May 2016
Accepté: 14 Oct 2016
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais

Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P., Feyen, L., 2014. Advances in pan-European flood hazard mapping. Hydrol. Proc., 28, 4067–4077.10.1002/hyp.9947Search in Google Scholar

Bissolli, P., Friedrich, K., Rapp, J., Ziese, M., 2011. Flooding in eastern central Europe in May 2010 - reasons, evolution and climatological assessment. Weather, 66, 147–153.10.1002/wea.759Search in Google Scholar

Capell, R., Tetzlaff, D., Malcolm, I.A., Hartley, A.J., Soulsby, C., 2011. Using hydrochemical tracers to conceptualise hydrological function in a large scale catchment draining contrasting geologic provinces. J. Hydrol., 408, 164–177.10.1016/j.jhydrol.2011.07.034Search in Google Scholar

Capell, R., Tetzlaff, D., Soulsby, C., 2012. Can time domain and source area tracers reduce uncertainty in rainfall runoff models in larger heterogeneous catchments? Water Resour. Res., 48, W09544.10.1029/2011WR011543Search in Google Scholar

Dohnal, M., Dušek, J., Vogel, T., 2006. The impact of the retention curve hysteresis on prediction of soil water dynamics. J. Hydrol. Hydromech., 54, 258–268.Search in Google Scholar

Dóša, M., Holko, L., Kostka, Z., 2011. Estimation of the mean transit times using isotopes and hydrograph recessions. Die Bodenkultur, 62, 47–52.Search in Google Scholar

Dusek, J., Vogel, T., Dohnal, M., Gerke, H.H., 2012. Combining dual-continuum approach with diffusion wave model to include a preferential flow component in hillslope scale modeling of shallow subsurface runoff. Adv. Water Res., 44, 113–125.10.1016/j.advwatres.2012.05.006Search in Google Scholar

Dutton, A., Wilkinson, B.H., Welker, J.M., Bowen, G.J., Lohmann, K.C., 2005. Spatial distribution and seasonal variation in 18O/16O of modern precipitation and river water across the conterminous United States. Hydrol. Process., 19, 4121–4146.10.1002/hyp.5876Search in Google Scholar

Farský, I., 1992. A comment on the anthropogenic impacts at the upper flow of the river Lužická Nisa. Sborník čes. geogr. spol., 97, 26–32.10.37040/geografie1992097010026Search in Google Scholar

Herczeg, A.L., Leaney, F.W., 2011. Review: environmental tracers in arid-zone hydrology. Hydrogeol. J., 19, 17–29.10.1007/s10040-010-0652-7Search in Google Scholar

Holko, L., Kostka, Z., Šanda, M., 2011. Assessment of Frequency and Areal Extent of Overland Flow Generation in a Forested Mountain Catchment. Soil & Water Res., 6, 1, 43–53.10.17221/33/2010-SWRSearch in Google Scholar

Isik, S., Kalin, L., Schoonover, J.E., Srivastava, P., Lockaby, G.B., 2013. Modeling effects of changing land use/cover on daily streamflow: An artificial neural network and curve number based hybrid approach. J. Hydrol., 485, 103–112.10.1016/j.jhydrol.2012.08.032Search in Google Scholar

Kändler, M., Seidler, C., 2009. Hydrochemical Load in a Small River Following Heavy Rain Events. Folia Geographica, Series Geographica-Physica, 40, 27–32.Search in Google Scholar

Kendall, C., Coplen, T.B., 2001. Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol. Process., 15, 1363–1393.10.1002/hyp.217Search in Google Scholar

Klaus, J., McDonnell, J.J., 2013. Hydrograph separation using stable isotopes: review and evaluation. J. Hydrol., 505, 47–64.10.1016/j.jhydrol.2013.09.006Search in Google Scholar

Klomínský, J., 1969. The Krkonoše-Jizera granitoid massif. Sb. geol. věd, 15, 1–134.Search in Google Scholar

Köplin, N., Viviroli, D., Schädler, B., Weingartner, R., 2014. How does climate change affect mesoscale catchments in Switzerland? - A framework for a comprehensive assessment. Adv. Geosci., 27, 111–119.10.5194/adgeo-27-111-2010Search in Google Scholar

Kralik, M., 2015. How to estimate mean residence times of groundwater. Proc. Earth Planet. Sci., 13, 301–306.10.1016/j.proeps.2015.07.070Search in Google Scholar

Markovics, R., Kanduč, T., Szramek, K., Golobočanin, D., Milačič, R., Ogrinc, N., 2010. Chemical dynamics of the Sava riverine system. J. Eviron. Monit., 12, 2165–2176.10.1039/c0em00121jSearch in Google Scholar

McDonnell, J.J., McGuire, K., Aggarwal, P., Beven, K.J., Biondi, D., Destouni, G., Dunn, S., James, A., Kirchner, J., Kraft, P., Lyon, S., Maloszewski, P., Newman, B., Pfister, L., Rinaldo, A., Rodhe, A., Sayama, T., Seibert, J., Solomon, K., Soulsby, C., Stewart, M., Tetzlaff, D., Tobin, C., Troch, P., Weiler, M., Western, A., Wörman, A., Wrede, S., 2010. How old is streamwater? Open questions in catchment transit time conceptualization, modelling and analysis. Hydrol. Process., 24, 1745–1754.10.1002/hyp.7796Search in Google Scholar

McGuire, K.J., McDonnell, J.J., Weiler, M., Kendall, C., McGlynn, B.L., Welker, J.M., Seibert, J., 2005. The role of topography on catchment scale water residence time. Water Resour. Res., 41, 1–14.10.1029/2004WR003657Search in Google Scholar

Montzka, C., Kanty, M., Kunkel, R., Menz, G., Vereecken, H., Wendland, F., 2008. Modelling the water balance of a mesoscale catchment basin using remotely sensed land cover data. J. Hydrol., 353, 322–334.10.1016/j.jhydrol.2008.02.018Search in Google Scholar

Nadezhdina, N., David, T.S., David, J.S., Ferreira, M.I., Dohnal, M., Tesař, M., Gartner, K., Leitgeb, E., Nadezhdin, V., Čermák, J., Jimenez, M.S., Morales, D., 2010. Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrol., 3, 431–444.10.1002/eco.148Search in Google Scholar

Niehoff, D., Fritsch, U., Bronstert, A., 2002. Land-use impacts on storm-runoff generation: Scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. J. Hydrol., 267, 80–93.10.1016/S0022-1694(02)00142-7Search in Google Scholar

Nikodem, A., Kodešová, R., Bubeníčková, L., 2013. Simulation of the influence of rainfall redistribution in spruce and beech forest on the leaching of Al and SO42− from forest soils. J. Hydrol. Hydromech., 61, 39–49.10.2478/johh-2013-0006Search in Google Scholar

Pardo, L.H., Kendall, C., PettRidge, J., Chang, C.C.Y., 2004. Evaluating the source of streamwater nitrate using d15N and d18O in nitrate in two watersheds in New Hampshire, USA. Hydrol. Process., 18, 2, 699–712.10.1002/hyp.5576Search in Google Scholar

Pavlů, V., Hejcman, M., Pavlů, L., Gaisler, J., 2007. Restoration of grazing management and its effect on vegetation in an upland grassland. Appl. Veget. Sci., 10, 375–382.10.1111/j.1654-109X.2007.tb00436.xSearch in Google Scholar

Pawellek, F., Frauenstein, F., Veizer, J., 2002. Hydrochemistry and isotope geochemistry of the upper Danube River. J. Hydrol., 66, 3839–3853.10.1016/S0016-7037(01)00880-8Search in Google Scholar

Penna, D., Stenni, B., Šanda, M., Wrede, S., Bogaard, T.A., Gobbi, A., Borga, M., Fischer, B.M.C., Bonazza, M., Chárová, Z., 2010. On the reproducibility and repeatability of laser absorption spectroscopy measurements for δ2H and δ18O isotopic analysis. Hydrol. Earth Syst. Sci., 14, 1551–1566.10.5194/hess-14-1551-2010Search in Google Scholar

Pohle, I., Koch, H., Conradt, T., Gädeke, A., Grünewald, U., 2015. Potential impacts of climate change and regional anthropogenic activities in Central European mesoscale catchments. Hydr. Sci. J., 60, 912–928.10.1080/02626667.2014.968571Search in Google Scholar

Popescu, R., Costinel, D., Ionete, R.E., Axente, D., 2014. Isotopic fingerprint of the middle Olt River basin, Romania. Isotopes Eviron. Health Stud., 50, 461–474.10.1080/10256016.2014.95944325299076Search in Google Scholar

Šanda, M., Vitvar, T., Kulasová, A., Jankovec, J., Císlerová, M., 2014. Runoff formation in a humid, temperate headwater catchment using a combined hydrological, hydrochemical and isotopic approach Jizera Mountains, Czech Republic. Hydrol. Process., 28, 3217–3229.10.1002/hyp.9847Search in Google Scholar

Sněhota, M., Sobotková, M., Císlerová, M., 2008. Impact of the entrapped air on water flow and solute transport in heterogeneous soil: experimental set-up. J. Hydrol. Hydromech., 56, 247–256.Search in Google Scholar

Soulsby, C., Tetzlaff, D., Hrachowitz, M., 2010. Spatial distribution of transit times in montane catchments: conceptualization tools for management. Hydrol. Process., 24, 3283–3288.10.1002/hyp.7864Search in Google Scholar

Tetzlaff, D., Waldron, S., Brewer, D.J., Soulsby, C., 2007. Assessing nested hydrological and hydrochemical behaviour of a mesoscale catchment using continuous tracer data. J. Hydrol., 336, 430–443.10.1016/j.jhydrol.2007.01.020Search in Google Scholar

Uhlenbrook, S., Roser, S., Tilch, N., 2004. Hydrological process representation at the meso-scale: the potential of a distributed, conceptual catchment model. J. Hydrol., 291, 278–296.10.1016/j.jhydrol.2003.12.038Search in Google Scholar

Vitvar, T., Aggarwal, P.K., Herczeg, A.L., 2007. Global network is launched to monitor isotopes in rivers. EOS, Trans. AGU, 88, 325–326.10.1029/2007EO330001Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo