À propos de cet article

Citez

[1] ZEMAN, M. : Thin-Film Silicon PV Technology, Journal of Electrical Engineering 61 No. 5 (2010), 271–276.10.2478/v10187-010-0039-ySearch in Google Scholar

[2] MIKOLÁŠEK, M.—JAKABOVIŠ, J.—ŘEHÁČEK, V.—HARMATHA, L.—ANDOK, R. : Capacitance Analysis of the Structures with the a-Si: H (i)/c-Si (p) Heterojunction for Solar-Cell Applications, Journal of Electrical Engineering 65 No. 4 (2014), 254–258.10.2478/jee-2014-0039Search in Google Scholar

[3] HARMATHA, L.—MIKOLÁŠEK, M.—KÓSA, A.—ŽIŠKA, M.—HRUBČÍN, L.—SKURATOV, V. A. : Electrically Active Defects in Solar Cells Based on Amorphous Silicon/Crystalline Silicon Heterojunction after Irradiation by Heavy Xe Ions, Journal of Electrical Engineering 66 No. 6 (2015), 323–328.10.2478/jee-2015-0053Search in Google Scholar

[4] TAKA, N.—KURAKATA, H.—OKUNO, T.—YOSHIDA, S.—MATSUGOTO, H.—GOTO, M. et al : Space Proven GaAs Solar Cells-Main Power Generation for CS-3, IEEE, 1219–24 1990.Search in Google Scholar

[5] PERNÝ, M.—KUSKO, M.—ŠÁLY, V.—PACKA, J. : PV Concentrator Cells Complex Impedance under the Bias in the Dark, Conference Record of the IEEE Photovoltaic Specialists Conference, art. no. 5614438, 2010, pp. 1461–1464.Search in Google Scholar

[6] GREEN, M, A.—EMERY, K.—HISHIKAWA, Y.—WARTA, V.—DUNLOP, E. D. : Solar Cell Efficiency Tables (version 47), Prog. Photovolt: Res. Appl. 24 (2016), 3–11.10.1002/pip.2728Search in Google Scholar

[7] ASIM, N.—SOPIAN, K.—AHMADI, S.—SAEEDFAR, K.—ALGHOUL, M. A.—SAADATIAN, O. et al : A Review on the Role of Materials Science in Solar Cells, Renew Sustain Energy Rev 16 (2012), 5834–47.10.1016/j.rser.2012.06.004Search in Google Scholar

[8] FRAAS, L.—PARTAIN, L. : Solar Cells and their Applications, 2nd ed., John Wiley & Sons, Inc., 2010.10.1002/9780470636886Search in Google Scholar

[9] LILENSTEN, J. : Le Systeme Solaire Revisite, Edition Eyrolles, 2006.Search in Google Scholar

[10] LOO, R. Y.—KAMATH, G. S. Li,—S. S. : Radiation Damage and Annealing in GaAs Solar Cells, IEEE Trans Electron Devices 31 No. 2 (Feb 1990).10.1109/16.46387Search in Google Scholar

[11] WEISS, S.—KASSING, R. : Deep Level Transient Fourier Spectroscopy (DLTFS) — A Technique for the Analysis of Deep Level Properties, Solid-State Elecrronics 3l, No. 12 (1988), 1733–1742, Institut für Technische Physik, Universität Kassel Dl-3500 Kassel F.R.G..Search in Google Scholar

[12] LANG, D. V. : Deep Level Transient Spectroscopy: A New Method to Characterize Traps in Semiconductors, J. Appl. Phys. 45 (1974), American Institute of Physics.10.1063/1.1663719Search in Google Scholar

[13] PARTIN, D. L.—CHEN, J.W.—MILNES, A. G.—VASSAMILLET, L. F. : Deep Level Transient Spectroscopy Studies of Ni and Zn Diffused Vapour Phase Epitaxy n GaAs, Journal of Applied Physics 50 (1979), 6845, doi: 10.1063/1.325884.10.1063/1.325884Search in Google Scholar

[14] ENGSTROM, O.—KANIEWSKA, M. : Discovery of Classes among Deep Level Centers in Gallium Arsenide, Materials Science and Engineering: B 138.1 (2007), 12–15.10.1016/j.mseb.2006.12.004Search in Google Scholar

[15] DONEKER, J.—RECHENBERGI. : Defect Recognition and Image Processing in Semiconductors, In: Proceedings of the seventh conference on Defect Recognition and Image Processing, CRC Press, 1998.Search in Google Scholar

[16] SUKKI, M.—EUN, K. K.—HOON, Y. C. : Abnormal Behavior of Midgap Electron Trap in HBGaAs during Thermal Annealing, Journal of Applied Physics 63 (1988), 4422, doi: 10.1063/1.340187.10.1063/1.340187Search in Google Scholar

eISSN:
1339-309X
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other