Accès libre

Monitoring Acute Myocardial Infarction Complicated with Cardiogenic Shock — from the Emergency Room to Coronary Care Units

À propos de cet article

Citez

1. Reynolds HR, Hochman JS. Cardiogenic shock: current concepts and improving outcomes. Circulation. 2008;117:686-697. doi:10.1161/CIRCULATIONAHA.106.613596.10.1161/CIRCULATIONAHA.106.61359618250279Search in Google Scholar

2. Hochman JS. Cardiogenic shock complicating acute myocardial infarction: expanding the paradigm. Circulation. 2003;107:2998-3002. doi: 10.1161/01.CIR.0000075927.67673.F2.10.1161/01.CIR.0000075927.67673.F212821585Search in Google Scholar

3. Khalid L, Dhakam S. A Review of Cardiogenic Shock in Acute Myocardial Infarction. Current Cardiology Reviews. 2008;4:34-40. doi: 10.2174/157340308783565456.10.2174/157340308783565456277458319924275Search in Google Scholar

4. Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med. 1999;341:625-34. doi: 10.1056/NEJM199908263410901.10.1056/NEJM19990826341090110460813Search in Google Scholar

5. Fox KA, Steg PG, Eagle KA, et al. Decline in rates of death and heart failure in acute coronary syndromes, 1999-2006. JAMA. 2007; 297:1892-1900. doi:10.1001/jama.297.17.1892.10.1001/jama.297.17.189217473299Search in Google Scholar

6. Goldberg RJ, Spencer FA, Gore JM, Lessard D, Yarzebski J. Thirty Year Trends (1975-2005) in the Magnitude, Management, and Hospital Death Rates Associated With Cardiogenic Shock in Patients with Acute Myocardial Infarction: A Population-Based Perspective. Circulation. 2009;119:1211-1219. doi:10.1161/CIRCULATIONAHA.108.814947.10.1161/CIRCULATIONAHA.108.814947273083219237658Search in Google Scholar

7. Babaev A, Frederick PD, Pasta DJ, et al. Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock. JAMA. 2005; 294:448-454. doi: 10.1001/jama.294.4.448.10.1001/jama.294.4.44816046651Search in Google Scholar

8. TRIUMPH Investigators, Alexander JH, Reynolds HR, et al. Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA. 2007;297:1657-1666. doi: 10.1001/jama.297.15.joc70035.10.1001/jama.297.15.joc7003517387132Search in Google Scholar

9. Werdan K, Ruß M, Buerke M, et al. Cardiogenic shock due to myocardial infarction: diagnosis, monitoring and treatment: a German-Austrian S3 Guideline. Dtsch Arztebl Int. 2012;109:343-51. doi: 10.3238/arztebl.2012.0343.10.3238/arztebl.2012.0343336452822675405Search in Google Scholar

10. Reynolds HR, Hochman JS. Cardiogenic shock: current concepts and improving outcomes. Circulation. 2008;117:686-697. doi: 10.1161/CIRCULATIONAHA.106.613596.10.1161/CIRCULATIONAHA.106.613596Search in Google Scholar

11. Bartling B, Milting H, Schumann H, et al. Myocardial gene expression of regulators of myocyte apoptosis and myocyte calcium homeostasis during hemodynamic unloading by ventricular assist devices in patients with end-stage heart failure. Circulation. 1999;100:216-223. https://doi.org/10.1161/01.CIR.100.suppl_2.II-216.10.1161/01.CIR.100.suppl_2.II-216Search in Google Scholar

12. Li YY, Feng Y, McTiernan CF, et al. Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation. 2001;104:1147-1152.10.1161/hc3501.09521511535571Search in Google Scholar

13. Delgado R 3rd, Radovancevic B, Massin EK, Frazier OH, Benedict C. Neurohormonal changes after implantation of a left ventricular assist system. ASAIO J. 1998;44:299-302.10.1097/00002480-199807000-000119682956Search in Google Scholar

14. Shah NR, Bieniarz MC, Basra SS, et al. Serum biomarkers in severe refractory cardiogenic shock. JACC Heart Fail. 2013;1:200-6. doi: 10.1016/j.jchf.2013.03.002.10.1016/j.jchf.2013.03.00224621870Search in Google Scholar

15. Chiotoroiu A, Buicu F, Benedek T. Recent advances in biomarker discovery – from serum to imaging-based biomarkers for a complex assessment of heart failure patients. Journal of Interdisciplinary Medicine. 2016;1:125-130. doi: 10.1515/jim-2016-0045.10.1515/jim-2016-0045Search in Google Scholar

16. Meredith AJ, Dai DLY, Chen V, et al. Circulating biomarker responses to medical management vs. mechanical circulatory support in severe inotrope-dependent acute heart failure. Esc Heart Failure. 2016;3:86-96. doi:10.1002/ehf2.12076.10.1002/ehf2.12076506315827774271Search in Google Scholar

17. Duma RJ, Siegel AL. Serum creatinine phosphokinase in acute myocardial infarction: diagnostic value. Arch Intern Med. 1965;115:443-51.10.1001/archinte.1965.0386016006901114274140Search in Google Scholar

18. Pierce GF, Jaffe AS. Increased creatine kinase MB in the absence of acute myocardial infarction. Clin Chem. 1986;32:2044-51.10.1093/clinchem/32.11.2044Search in Google Scholar

19. Al-Hadi HA, Fox KA. Cardiac Markers in the Early Diagnosis and Management of Patients with Acute Coronary Syndrome. Sultan Qaboos University Medical Journal. 2009;9:231-246.Search in Google Scholar

20. Saenger AK, Jaffe AS. The use of biomarkers for the evaluation and treatment of patients with acute coronary syndromes. Med Clin North Am. 2007;91:657-681. doi: 10.1016/j.mcna.2007.04.001.10.1016/j.mcna.2007.04.00117640541Search in Google Scholar

21. Irvin RG, Cobb FR, Roe CR. Acute myocardial infarction and MB creatine phosphokinase. Relationship between onset of symptoms of infarction and appearance and disappearance of enzyme. Arch Intern Med. 1980;140:329-334. doi:10.1001/archinte.1980.00330150043014.10.1001/archinte.1980.00330150043014Search in Google Scholar

22. Gibler WB, Young GP, Hedges JR et al. Acute myocardial infarction in chest pain patients with non-diagnostic ECGs: serial CK-MB sampling in the emergency department. The Emergency Medicine Cardiac Research Group. Ann Emerg Med. 1992;21:504-512.Search in Google Scholar

23. Daubert MA, Jeremias A. The utility of troponin measurement to detect myocardial infarction: review of the current findings. Vasc Health Risk Manag. 2010;6:691-699.Search in Google Scholar

24. del Val Martin D, Sanmartin Fernandez MS, Zamorano Gomez JL. Biomarkers in acute coronary syndrome. IJC Metabolic & Endocrine. 2015;8:20-23. https://doi.org/10.1016/j.ijcme.2015.04.00310.1016/j.ijcme.2015.04.003Search in Google Scholar

25. Tucker JF, Collins RA, Anderson AJ, Hauser J, Kalas J, Apple FS. Early diagnostic efficiency of cardiac troponin I and Troponin T for acute myocardial infarction. Acad Emerg Med. 1997;4:13-21.10.1111/j.1553-2712.1997.tb03637.x9110006Search in Google Scholar

26. Vaughan L. Biomarkers in acute medicine. Medicine. 2013;41:136-141. doi: http://dx.doi.org/10.1016/j.mpmed.2013.01.001.10.1016/j.mpmed.2013.01.001Search in Google Scholar

27. Tanindi A, Cemri M. Troponin elevation in conditions other than acute coronary syndromes. Vasc Health Risk Manag. 2011;7:597-603. doi:10.2147/VHRM.S24509.10.2147/VHRM.S24509321242522102783Search in Google Scholar

28. Gunnewiek JM, Van Der Hoeven JG. Cardiac troponin elevations among critically ill patients. Curr Opin Crit Care. 2004;10:342-346.10.1097/01.ccx.0000135514.20538.4415385749Search in Google Scholar

29. Peacock WF 4th, De Marco T, Fonarow GC, et al. Cardiac Troponin and Outcome in Acute Heart Failure. N Engl J Med. 2008;358:2117-2126. doi: 10.1056/NEJMoa0706824.10.1056/NEJMoa070682418480204Search in Google Scholar

30. Sato Y, Yamada T, Taniguchi T, et al. Persistently increased serum concentrations of cardiac troponin T in patients with idiopathic dilated cardiomyopathy are predictive of adverse outcomes. Circulation. 2001;103:369-74.10.1161/01.CIR.103.3.36911157687Search in Google Scholar

31. Pascual-Figal DA, Manzano-Fernandez S, Boronat M, et al. Soluble ST2, high-sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure. Eur J Heart Fail. 2011;13:718-725. doi: 10.1093/eurjhf/hfr047.10.1093/eurjhf/hfr04721551163Search in Google Scholar

32. Jolly SS, Shenkman H, Brieger D, et al. Quantitative troponin and death, cardiogenic shock, cardiac arrest and new heart failure in patients with non-ST-segment elevation acute coronary syndromes (NSTE ACS): insights from the Global Registry of Acute Coronary Events. Heart. 2011;97:197-202. doi: 10.1136/hrt.2010.195511.10.1136/hrt.2010.19551121076124Search in Google Scholar

33. Iqbal MP, Kazmi KA, Mehboobali N, Rahbar A. Myoglobin – a marker of reperfusion and a prognostic indicator in patients with acute myocardial infarction. Clin Cardiol. 2004;27:144-50.10.1002/clc.4960270309665461615049381Search in Google Scholar

34. Alhadi HA, Fox KA. Do we need additional markers of myocyte necrosis: the potential value of heart fatty-acid-binding protein. QJM. 2004;97:187-198.10.1093/qjmed/hch03715028848Search in Google Scholar

35. Colli A, Josa M, Pomar JL, Mestres CA, Gherli T. Heart fatty acid binding protein in the diagnosis of myocardial infarction: where do we stand today? Cardiology. 2007;108:4-10. doi: 10.1159/000095594.10.1159/00009559416960442Search in Google Scholar

36. Alansari SE, Croal BL. Diagnostic value of heart fatty acid binding protein and myoglobin in patients admitted with chest pain. Ann Clin Biochem. 2004;41:391-396. doi: 10.1258/0004563041731565.10.1258/000456304173156515333191Search in Google Scholar

37. Ilva T, Lund J, Porela P, et al. Early markers of myocardial injury: cTnI is enough. Clin Chim Acta. 2009;400:82-85. doi: 10.1016/j.cca.2008.10.005.10.1016/j.cca.2008.10.00518992232Search in Google Scholar

38. Manzano-Fernandez S, Januzzi JL, Pastor-Perez FJ, et al. Serial monitoring of soluble interleukin family member ST2 in patients with acutely decompensated heart failure. Cardiology. 2012;122:158-166. doi: 10.1159/000338800.10.1159/00033880022832599Search in Google Scholar

39. Caselli C, D'Amico A, Ragusa R, et al. IL-33/ST2 pathway and classical cytokines in end-stage heart failure patients submitted to left ventricular assist device support: a paradoxic role for inflammatory mediators? Mediators Inflamm. 2013;2013:498703. doi: 10.1155/2013/498703.10.1155/2013/498703387244524385685Search in Google Scholar

40. Meredith AJ, Dai DLY, Chen V, et al. Circulating biomarker responses to medical management vs. mechanical circulatory support in severe inotrope-dependent acute heart failure. Esc Heart Failure. 2016;3:86-96. doi:10.1002/ehf2.12076.10.1002/ehf2.12076506315827774271Search in Google Scholar

41. Yasue H, Yoshimura M, Sumida H, et al. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994;90:195-203.10.1161/01.CIR.90.1.1958025996Search in Google Scholar

42. Richards AM, Nicholls MG, Espiner EA, et al. B-type natriuretic peptides and ejection fraction for prognosis after myocardial infarction. Circulation. 2003;107:2786-2792. doi: 10.1161/01.CIR.0000070953.76250.B9.10.1161/01.CIR.0000070953.76250.B912771003Search in Google Scholar

43. de Lemos JA, Morrow DA, Bentley JH, et al. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med. 2001;345:1014-1021. doi: 10.1056/NEJMoa011053.10.1056/NEJMoa01105311586953Search in Google Scholar

44. Khan SQ, Dhillon OS, O’Brien RJ, et al. C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) study. Circulation. 2007;115:2103-2110. doi: 10.1161/CIRCULATIONAHA.106.685503.10.1161/CIRCULATIONAHA.106.68550317420344Search in Google Scholar

45. Reichlin T, HochholzerW, Stelzig C, et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol. 2009;54:60-68. doi:10.1016/j.jacc.2009.01.076.10.1016/j.jacc.2009.01.07619555842Search in Google Scholar

46. Shpektor A. Cardiogenic shock: the role of inflammation. Acute Card Care. 2010;12:115-118. doi: 10.3109/17482941.2010.523705.10.3109/17482941.2010.52370521039083Search in Google Scholar

47. Kohsaka S, Menon V, Lowe AM, et al. Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock. Arch Intern Med. 2005;165:1643-1650. doi: 10.1001/archinte.165.14.1643.10.1001/archinte.165.14.164316043684Search in Google Scholar

48. Pudil R, Krejsek J, Pidrman V, Gregor J, Tichy M, Bures J. Inflammatory response to acute myocardial infarction complicated by cardiogenic shock. Acta Medica. 2001;44:149-151.Search in Google Scholar

49. Geppert A, Dorninger A, Delle-Karth G, Zorn G, Heinz G, Huber K. Plasma concentrations of interlukin-6, organ failure, vasopressor support, and successful revascularization in predicting 30-day mortality of patients with cardiogenic shock complicating acute myocardial infarction. Crit Care Med. 2006;34:2035-2042. doi: 10.1097/01.CCM.0000228919.33620.D9.10.1097/01.CCM.0000228919.33620.D916775569Search in Google Scholar

50. Theroux P, Armstrong PW, Mahaffey KW et al. Prognostic significance of blood markers of inflammation in patients with ST-elevation myocardial infarction undergoing primary angioplasty and effects of pexelizumab, a C5 inhibitor: A substudy of the COMMA trial. Eur Heart J. 2005:26;1964-1970. doi:10.1093/eurheartj/ehi292.10.1093/eurheartj/ehi29215872036Search in Google Scholar

51. Mueller C, Buettner HJ, Hodgson JM, et al. Inflammation and long-term mortality after non-ST elevation acute coronary syndrome treated with a very early invasive strategy in 1042 consecutive patients. Circulation. 2002;105:1412-1415.10.1161/01.CIR.0000012625.02748.6211914246Search in Google Scholar

52. Schiele F, Meneveau N, Seronde MF, et al. C-reactive proteinimproves risk prediction in patients with acute coronary syndromes. Eur Heart J. 2010;31:290-297. doi:10.1093/eurheartj/ehp273.10.1093/eurheartj/ehp27319578164Search in Google Scholar

53. Meijers WC, van der Velde AR, de Boer RA. The ARCHITECT galectin-3 assay: comparison with other automated and manual assays for the measurement of circulating galectin-3 levels in heart failure. Expert Rev Mol Diagn. 2014;14:257-266. doi: 10.1586/14737159.2014.892421.10.1586/14737159.2014.89242124606321Search in Google Scholar

54. Giannitsis E, Katus HA. Troponins and high-sensitivity troponins as markers of necrosis in CAD and heart failure. Herz. 2009;34:600-606. doi: 10.1007/s00059-009-3306-6.10.1007/s00059-009-3306-620024639Search in Google Scholar

55. Daniels LB, Bayes-Genis A. Using ST2 in cardiovascular patients: a review. Future Cardiol. 2014;10:525-539. doi: 10.2217/fca.14.36.10.2217/fca.14.3625301315Search in Google Scholar

56. De Berardinis B, Gaggin HK, Magrini L, et al. Comparison between admission natriuretic peptides, NGAL and sST2 testing for the prediction of worsening renal function in patients with acutely decompensated heart failure. Clin Chem Lab Med. 2014;53:613-621. http://dx.doi.org/10.1515/cclm-2014-0191.10.1515/cclm-2014-019125473804Search in Google Scholar

57. Anand IS, Latini R, Florea VG, et al. C-Reactive Protein in Heart Failure Prognostic Value and the Effect of Valsartan. Circulation. 2005;112:1428-1434. doi: 10.1161/CIRCULATIONAHA.104.508465.10.1161/CIRCULATIONAHA.104.50846516129801Search in Google Scholar

58. Ribeiro DRP, Ramos AM, Vieira PL, et al. High-Sensitivity C-Reactive Protein as a Predictor of Cardiovascular Events after ST-Elevation Myocardial Infarction. Arquivos Brasileiros de Cardiologia. 2014;103:69-75. doi:10.5935/abc.20140086.10.5935/abc.20140086412676325120085Search in Google Scholar

59. Yip HK, Hang CL, Fang CY, et al. Level of high-sensitivity C-reactive protein is predictive of 30-day outcomes in patients with acute myocardial infarction undergoing primary coronary intervention. Chest. 2005;127:803-808. doi: 10.1378/chest.127.3.803.10.1378/chest.127.3.80315764760Search in Google Scholar

60. Magdalen R, Hertz I, Merlon H, Weiner P, Mohammedi I, Robert D. The relation between preprocedural C-reactive protein levels and early and late complications in patients with acute myocardial infarction undergoing interventional coronary angioplasty. Clin Cardiol. 2004;27:163-168.10.1002/clc.4960270314665448215049386Search in Google Scholar

61. Karpiński L, Płaksej R, Kosmala W, Witkowska M. Serum levels of interleukin-6, interleukin-10 and C-reactive protein in relation to left ventricular function in patients with myocardial infarction treated with primary angioplasty. Kardiol Pol. 2008;66:1279-1285.Search in Google Scholar

62. Matsubara J, Sugiyama S, Nozaki T, et al. Incremental Prognostic Significance of the Elevated Levels of Pentraxin 3 in Patients With Heart Failure With Normal Left Ventricular Ejection Fraction. J Am Heart Assoc. 2014;3:1-11. doi:10.1161/JAHA.114.000928.10.1161/JAHA.114.000928431037825012287Search in Google Scholar

63. Guo R, Li Y, Wen J, Li W, Xu Y. Elevated plasma level of pentraxin-3 predicts in-hospital and 30-day clinical outcomes in patients with non-ST-segment elevation myocardial infarction who have undergone percutaneous coronary intervention. Cardiology. 2014;129:178-188. doi: 10.1159/000364996.10.1159/00036499625323314Search in Google Scholar

64. Latini R, Maggioni AP, Peri G, et al. Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction. Circulation. 2004;110:2349-2354. doi: 10.1161/01.CIR.0000145167.30987.2E.10.1161/01.CIR.0000145167.30987.2E15477419Search in Google Scholar

65. Mallick A, Lanuzzi JL. Biomarkers in acute heart failure. Rev Esp Cardiol. 2015;68:514-525. doi: 10.1016/j.rec.2015.02.009.10.1016/j.rec.2015.02.00925911167Search in Google Scholar

66. Bayes-Genis A, Ordonez-Llanos J. Multiple biomarker strategies for risk stratification in heart failure. Clin Chim Acta. 2015;443:120-125. doi: 10.1016/j.cca.2014.10.023.10.1016/j.cca.2014.10.02325451945Search in Google Scholar

67. De Antonio M, Lupon J, Galan A, Vila J, Urrutia A, Bayes-Genis A. Combined use of high-sensitivity cardiac troponin T and N-terminal pro-B type natriuretic peptide improves measurements of performance over established mortality risk factors in chronic heart failure. Am Heart J. 2012;163:821-828. doi: 10.1016/j.ahj.2012.03.004.10.1016/j.ahj.2012.03.00422607860Search in Google Scholar

68. Maisel AS, Mueller C, Fitzgerald R, et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur J Heart Fail. 2011;13:846-851. doi: 10.1093/eurjhf/hfr087.10.1093/eurjhf/hfr087314383221791540Search in Google Scholar

69. Holmes JW, Borg TK, Covell JW. Structure and mechanics of healing myocardial infarcts. Annu Rev Biomed Eng. 2005;7:223-253. doi:10.1146/annurev.bioeng.7.060804.100453.10.1146/annurev.bioeng.7.060804.10045316004571Search in Google Scholar

70. van Kimmenade RR, Januzzi JL Jr, Ellinor PT, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48:1217-1224. doi: 10.1016/j.jacc.2006.03.061.10.1016/j.jacc.2006.03.06116979009Search in Google Scholar

71. Bayes-Genis A, Ordonez-Llanos J. Multiple biomarker strategies for risk stratification in heart failure. Clin Chim Acta. 2015;443:120-125. doi: 10.1016/j.cca.2014.10.023.10.1016/j.cca.2014.10.023Search in Google Scholar

72. Ky B, French B, Levy WC, et al. Multiple biomarkers for risk prediction in chronic heart failure. Circ Heart Fail. 2012;5:183-190. doi: 10.1161/CIRCHEARTFAILURE.111.965020.10.1161/CIRCHEARTFAILURE.111.965020338748722361079Search in Google Scholar

73. Daniels LB, Bayes-Genis A. Using ST2 in cardiovascular patients: a review. Future Cardiol. 2014;10:525-539. doi: 10.2217/fca.14.36.10.2217/fca.14.3625301315Search in Google Scholar

74. de Boer RA, Lok DJ, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med 2011;43:60-68. doi: 10.3109/07853890.2010.538080.10.3109/07853890.2010.538080302857321189092Search in Google Scholar

75. Singh RB, Dandekar SP, Elimban V, Gupta SK, Dhalla NS. Role of proteases in the pathophysiology of cardiac disease. Mol Cell Biochem. 2004;263:241-256.10.1023/B:MCBI.0000041865.63445.40Search in Google Scholar

76. Ali MA, Schulz R. Activation of MMP-2 as a key event in oxidative stress injury to the heart. Front Biosci (Landmark Ed). 2009;14:699-716.Search in Google Scholar

77. Ahmed SH, Clark LL, Pennington WR, et al. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix, composition and structural, functional and clinical manifestations of hypertensive heart disease. Circulation 2006;113:2089-2096. doi: 10.1161/CIRCULATIONAHA.105.573865.10.1161/CIRCULATIONAHA.105.573865Search in Google Scholar

78. Krum H, Elsik M, Schneider HG, et al. Relation of peripheral collagen markers to death and hospitalization in patients with heart failure and preserved ejection fraction: results of the I-PRESERVE collagen substudy. Circ Heart Fail. 2011:4:561-568. doi:10.1161/CIRCHEARTFAILURE.110.960716.10.1161/CIRCHEARTFAILURE.110.960716Search in Google Scholar

79. Rao PK, Toyama Y, Chiang HR et al. Loss of cardiac microRNAmediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res. 2009;105:585-594. doi:10.1161/CIRCULATIONAHA.105.573865.10.1161/CIRCULATIONAHA.105.573865Search in Google Scholar

80. Wang Y, Pan X, Fan Y, et al. Dysregulated expression of microRNAs and mRNAs in myocardial infarction. Am J Transl Res. 2015;7:2291-2304.Search in Google Scholar

81. Stanton LW, Garrard LJ, Damm D, et al. Altered patterns of gene expression in response to myocardial infarction. Circ Res. 2000;86:939-945.10.1161/01.RES.86.9.939Search in Google Scholar

82. Kiliszek M, Burzynska B, Michalak M, et al. Altered gene expression pattern in peripheral blood mononuclear cells in patients with acute myocardial infarction. PLoS One. 2012;7:e50054. doi: 10.1371/journal.pone.0050054.10.1371/journal.pone.0050054Search in Google Scholar

83. Drew BJ, Califf RM, Funk M, et al. Practice Standards for Electrocardiographic Monitoring in Hospital Settings: An American Heart Association Scientific Statement From the Councils on Cardiovascular Nursing, Clinical Cardiology, and Cardiovascular Disease in the Young: Endorsed by the International Society of Computerized Electrocardiology and the American Association of Critical Care Nurses. Circulation. 2004;110:2721-2746. doi: 10.1161/01.CIR.0000145144.56673.59.10.1161/01.CIR.0000145144.56673.59Search in Google Scholar

84. Stevenson RN, Marchant BG, Ranjadayalan K, Uthayakumar S, Timmis AD. Holter ST monitoring early after acute myocardial infarction: mechanisms of ischaemia in patients treated by thrombolysis. Br Heart J. 1993;70:433-437.10.1136/hrt.70.5.433Search in Google Scholar

85. Johanson P, Jernberg T, Gunnarsson G, Lindahl B, Wallentin L, Dellborg M. Prognostic value of ST segment resolution when and what to measure. Eur Heart J. 2003;24:337-345. doi: https://doi.org/10.1016/S0195-668X(02)00739-X.10.1016/S0195-668X(02)00739-XSearch in Google Scholar

86. Flanders SA. ST Segment Monitoring: Putting Standards Into Practice. AACN Adv Crit Care. 2007;18:275-284.10.1097/01.AACN.0000284428.63460.52Search in Google Scholar

87. Leung JM, Voskanian A, Bellows AM. Automated electrocardiograph ST segment trending monitors: accuracy in detecting myocardial ischemia. Anesth Analg. 1998;87:4-10.Search in Google Scholar

88. Shanewise J. How to Reliably Detect Ischemia in the Intensive Care Unit and Operating Room. Semin Cardiothorac Vasc Anesth. 2006;10:101-109. doi: 10.1177/108925320601000117.10.1177/10892532060100011716703242Search in Google Scholar

89. Opincariu D, Chitu M, Rat N, Benedek I. Integrated ST segment elevation scores and in-hospital mortality in STEMI patients undergoing primary PCI. Journal of Cardiovascular Emergencies. 2016;2:114-121. doi: 10.1515/jce-2016-0018.10.1515/jce-2016-0018Search in Google Scholar

90. Ikossi DG, Knudson MM, Morabito DJ, et al. Continuous muscle tissue oxygenation in critically injured patients: a prospective observational study. J Trauma. 2006;61:780-790. doi: 10.1097/01.ta.0000239500.71419.58.10.1097/01.ta.0000239500.71419.5817033541Search in Google Scholar

91. Nicks BA, Campos KM, Bozeman WP. Association of low noninvasive near-infrared spectroscopic measurements during initial trauma resuscitation with future development of multiple organ dysfunction. World J Emerg Med. 2015;6:105-110. doi: 10.5847/wjem.j.1920-8642.2015.02.004.10.5847/wjem.j.1920-8642.2015.02.004445846926056540Search in Google Scholar

92. Miner J, Nelson R, Hayden L. The effect of near infrared spectroscopy monitoring on the treatment of patients presenting to the emergency department in shock. Crit Care Med. 2010;38:S861.Search in Google Scholar

93. Lima A, van Bommel J, Jansen TC, Ince C, Bakker J. Low tissue oxygen saturation at the end of early goal-directed therapy is associated with worse outcome in critically ill patients. Crit Care. 2009;13(Suppl5):S13. doi: 10.1186/cc8011.10.1186/cc8011278611519951385Search in Google Scholar

94. Mariscalo G, Musumeci F. Fluid management in the cardiothoracic intensive care unit: diuresis – diuretics and hemofiltration. Curr Opin Anaesthesiol. 2014;27:133-139. doi: 10.1097/ACO.0000000000000055.10.1097/ACO.000000000000005524514030Search in Google Scholar

95. Jakovljevic DG, Moore S, Hallsworth K, Fattakhova G, Thoma C, Trenell MI. Comparison of cardiac output determined by bioimpedance and bioreactance methods at rest and during exercise. J Clin Monit Comput. 2012;26:63-68. doi: 10.1007/s10877-012-9334-4.10.1007/s10877-012-9334-422234400Search in Google Scholar

96. Laupland KB, Shahpori R, Kirkpatrick AW, et al. Occurrence and outcome of fever in critically ill adults. Crit Care Med. 2008;36:1531. doi: 10.1097/CCM.0b013e318170efd3.10.1097/CCM.0b013e318170efd318434882Search in Google Scholar

97. Ryan M, Levy MM. Clinical review: fever in intensive care unit patients. Crit Care. 2003;7:221-225.10.1186/cc187927066712793871Search in Google Scholar

98. Niven DJ, Léger C, Stelfox HT, Laupland KB. Fever in the critically ill: a review of epidemiology, immunology, and management. J Intensive Care Med. 2012;27:290-297. doi: 10.1177/0885066611402463.10.1177/088506661140246321441283Search in Google Scholar

99. Niven DJ, Gaudet JE, Laupland KB, Mrklas KJ, Roberts DJ, Stelfox HT. Accuracy of Peripheral Thermometers for Estimating Temperature: A Systematic Review and Metaanalysis. Ann Intern Med. 2015;163:768-777. doi: 10.7326/M15-1150.10.7326/M15-115026571241Search in Google Scholar

100. Jefferies S, Weatherall M, Young P, Beasley R. A systematic review of the accuracy of peripheral thermometry in estimating core temperatures among febrile critically ill patients. Crit Care Resusc. 2011;13:194-199.Search in Google Scholar

101. Young PJ, Saxena M, Beasley R, et al. Early peak temperature and mortality in critically ill patients with or without infection. Intensive Care Med. 2012. doi: 10.1007/s00134-012-2478-3.10.1007/s00134-012-2478-322290072Search in Google Scholar

102. Jeremy S. Bock and Stephen S. Gottlieb. Cardiorenal Syndrome. Circulation. 2010;121:2592-2600. https://doi.org/10.1161/CIRCULATIONAHA.109.886473.10.1161/CIRCULATIONAHA.109.88647320547939Search in Google Scholar

103. Md Ralib A, Pickering JW, Shaw GM, Endre ZH. The urine output definition of acute kidney injury is too liberal. Critical Care. 2013;17:R112. doi:10.1186/cc12784.10.1186/cc12784405634923787055Search in Google Scholar

104. Prowle JR, Liu YL, Licari E, et al. Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit Care. 2011;17:R172. doi: 10.1186/cc10318.10.1186/cc10318338761421771324Search in Google Scholar

105. Macedo E, Malhotra R, Bouchard J, Wynn SK, Mehta RL. Oliguria is an early predictor of higher mortality in critically ill patients. Kidney Int. 2011;80:760-767. doi: 10.1038/ki.2011.150.10.1038/ki.2011.15021716258Search in Google Scholar

106. Uchino S, Kellum JA, Bellomo R, et al. Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813-818. doi: 10.1001/jama.294.7.813.10.1001/jama.294.7.81316106006Search in Google Scholar

107. Antonelli M, Levy M, Andrews PJ, et al. Hemodynamic monitoring in shock and implications for management. International Consensus Conference, Paris, France, 27-28 April 2006. Intensive Care Med. 2007;33:575-590. doi: 10.1007/s00134-007-0531-4.10.1007/s00134-007-0531-417285286Search in Google Scholar

108. McCullough PA, Adam A, Becker CR, et al. Epidemiology and prognostic implications of contrast-induced nephropathy. Am J Cardiol. 2006;98:5K-13K.10.1016/j.amjcard.2006.01.01916949375Search in Google Scholar

109. Mohammed NMA, Mahfouz A, Achkar K, Rafie IM, Hajar R. Contrast-induced Nephropathy. Heart Views. 2013;14:106-116. doi:10.4103/1995-705X.125926.10.4103/1995-705X.125926396962624696755Search in Google Scholar

110. Truijen J, van Lieshout JJ, Wesselink WA, Westerhof BE. Noninvasive continuous hemodynamic monitoring. J Clin Monit Comput. 2012;26:267-278. doi:10.1007/s10877-012-9375-8.10.1007/s10877-012-9375-8339135922695821Search in Google Scholar

111. Ameloot K, Palmers PJ, Malbrain ML. The accuracy of noninvasive cardiac output and pressure measurements with finger cuff: a concise review. Curr Opin Crit Care. 2015;21:232-239. doi: 10.1097/MCC.0000000000000198.10.1097/MCC.000000000000019825922896Search in Google Scholar

112. Martina JR, Westerhof BE, van Goudoever J, et al. Noninvasive continuous arterial blood pressure monitoring with Nexfin®. Anesthesiology. 2012;116:1092-1103. doi: 10.1097/ALN.0b013e31824f94ed.10.1097/ALN.0b013e31824f94ed22415387Search in Google Scholar

113. Kim SH, Lilot M, Sidhu KS, et al. Accuracy and precision of continuous noninvasive arterial pressure monitoring compared with invasive arterial pressure: a systematic review and meta-analysis. Anesthesiology. 2014;120:1080-1097. doi: 10.1097/ALN.0000000000000226.10.1097/ALN.000000000000022624637618Search in Google Scholar

114. Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol. 2007;293:H583-H589. doi: 10.1152/ajpheart.00195.2007.10.1152/ajpheart.00195.200717384132Search in Google Scholar

115. van Lieshout JJ, Toska K, van Lieshout EJ, Eriksen M, Walløe L, Wesseling KH. Beat-to-beat noninvasive stroke volume from arterial pressure and Doppler ultrasound. Eur J Appl Physiol. 2003;90:131-137.10.1007/s00421-003-0901-812851826Search in Google Scholar

116. Engore M, Barbee D. Comparison of Cardiac Output Determined by Bioimpedance, Thermodilution, and the Fick Method. Am J Crit Care. 2005;14:40-45.10.4037/ajcc2005.14.1.40Search in Google Scholar

117. Ball TR, Culp BC, Patel V, et al. Comparation of the endotracheal cardiac output monitor to thermodilution in cardiac surgery patients. J Cardiothorac Vasc. 2010;24:762-766. doi: 10.1053/j.jvca.2010.04.008.10.1053/j.jvca.2010.04.00820674392Search in Google Scholar

118. Babbs CF. Noninvasive measurement of cardiac stroke volume using pulse wave velocity and aortic dimensions: a simulation study. BioMedical Engineering OnLine. 2014;13:137. doi:10.1186/1475-925X-13-137.10.1186/1475-925X-13-137427135725238910Search in Google Scholar

119. Sakka SG, Kozieras J, Thuemer O, van Hout N. Measurement of cardiac output: a comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis. Br J Anaesth. 2007;99:337-342.10.1093/bja/aem17717611251Search in Google Scholar

120. Oren-Grinberg A. The PiCCO Monitor. Int Anesthesiol Clin. 2010;48:57-85. doi: 10.1097/AIA.0b013e3181c3dc11.10.1097/AIA.0b013e3181c3dc1120065727Search in Google Scholar

121. Young BP, Low LL. Noninvasive monitoring cardiac output using partial CO(2) rebreathing. Crit Care Clin. 2010;26:383-392. doi: 10.1016/j.ccc.2009.12.002.10.1016/j.ccc.2009.12.00220381727Search in Google Scholar

122. Cholley BP, Vieillard-Baron A, Mebazaa A. Echocardiography in the ICU: time for widespread use! Intensive Care Med. 2006;32:9-10. doi: 10.1007/s00134-005-2833-8.10.1007/s00134-005-2833-816292627Search in Google Scholar

123. Wilansky S. Echocardiography in the Assessment of Complications of Myocardial Infarction. Tex Heart Inst J. 1991;18:237-242.Search in Google Scholar

124. Esmaeilzadeh M, Parsaee M, Maleki M. The Role of Echocardiography in Coronary Artery Disease and Acute Myocardial Infarction. J Tehran Heart Cent. 2013;8:1-13.Search in Google Scholar

125. Bródka J, Tułecki Ł, Ciurysek M, Gburek T. Thermodilution vs transesophageal echocardiography for cardiac output measurement in patients with good left ventricle function. Anestezjol Intens Ter. 2010;42:15-18.Search in Google Scholar

126. Perrino AC Jr, Harris SN, Luther MA. Intraoperative determination of cardiac output using multiplane transesophageal echocardiography: a comparison to thermodilution. Anesthesiology. 1998;89:350-357.10.1097/00000542-199808000-000109710392Search in Google Scholar

127. Mehta Y, Arora D. Newer methods of cardiac output monitoring. World J Cardiol. 2014;6:1022-1029. doi:10.4330/wjc.v6.i9.102210.4330/wjc.v6.i9.1022417679325276302Search in Google Scholar

128. Laupland KB, Bands CJ. Utility of esophageal Doppler as a minimally invasive hemodynamic monitor: a review. Can J Anaesth. 2002;49:393-401. doi: 10.1007/BF03017329.10.1007/BF0301732911927480Search in Google Scholar

129. Sharma J, Bhise M, Singh A, Mehta Y, Trehan N. Hemodynamic measurements after cardiac surgery: transesophageal Doppler versus pulmonary artery catheter. J Cardiothorac Vasc Anesth. 2005;19:746-750.10.1053/j.jvca.2004.11.03816326299Search in Google Scholar

130. Camporata L, Beale R. Pitfalls in haemodynamic monitoring based on the arterial pressure waveform. Crit Care. 2010;14:124. doi: 10.1186/cc8845.10.1186/cc8845288710020236463Search in Google Scholar

131. Thom O, Taylor DM, Wolfe RE. Comparation of a suprasternal cardiac output monitor (USCOM) with the pulmonary artery catheter. Br J Anaesth. 2009;103:800-804. doi: 10.1093/bja/aep296.10.1093/bja/aep29619864307Search in Google Scholar

132. Pulmonary Artery Consensus Conference: consensus statement. Crit Care Med. 1997;25:910-925.10.1097/00003246-199706000-000069201042Search in Google Scholar

133. Bishop MH. Invasive monitoring in trauma and other critical illness. Current Opinion in Critical Care 1995;3:206.10.1097/00075198-199506000-00009Search in Google Scholar

134. Magder S. Invasive hemodynamic monitoring. Crit Care Clin. 2015;31:67-87. doi: 10.1016/j.ccc.2014.08.004.10.1016/j.ccc.2014.08.00425435479Search in Google Scholar

135. De Backer D. Is there a role for invasive hemodynamic monitoring in acute heart failure management? Curr Heart Fail Rep. 2015;12:197-204. doi: 10.1007/s11897-015-0256-6.10.1007/s11897-015-0256-625721355Search in Google Scholar

136. Runciman WB, Ilsley AH, Roberts JG. An evaluation of thermodilution cardiac output measurement using the Swan-Ganz catheter. Anaesth Intensive Care. 1981;9:208-220.10.1177/0310057X81009003027025698Search in Google Scholar

137. Ameloot K, Meex I, Genbrugge C, et al. Accuracy of continuous thermodilution cardiac output monitoring by pulmonary artery catheter during therapeutic hypothermia in postcardiac arrest patients. Resuscitation. 2014;85:1263-1268. doi: 10.1016/j.resuscitation.2014.06.025.10.1016/j.resuscitation.2014.06.02525008135Search in Google Scholar

138. Mebazaa A, Gheoghiade M, Piña IL, et al. Practical recommendations for prehospital and early in hospital management of patients presenting with acute heart failure SNVSndromes. Crit Care Med. 2008;36(1 Suppl):S129-S139. doi: 10.1097/01.CCM.0000296274.51933.4C.10.1097/01.CCM.0000296274.51933.4C18158472Search in Google Scholar

139. Filipescu D, Tomescu D, Droc G, et al. Recomandări pentru monitorizarea hemodinamică în soc. In: Sandesc D, Bedreag O (eds), Recomandări si protocoale în anestezie, terapie intensivă și medicină de urgentă. Timișoara: Ed Mirton, 2009; p. 541-570.Search in Google Scholar

140. Weed HG. Pulmonary “capillary” wedge pressure not the pressure in the pulmonary capillaries. Chest. 1991;100:1138-1140.10.1378/chest.100.4.11381914574Search in Google Scholar

141. Ryan JJ, Rich JD, Thiruvoipati T, Swamy R, Kim GH, Rich S. Current practice for determining pulmonary capillary wedge pressure predisposes to serious errors in the classification of patients with pulmonary hypertension. Am Heart J. 2012;163:589-594. doi: 10.1016/j.ahj.2012.01.024.10.1016/j.ahj.2012.01.02422520524Search in Google Scholar

142. Cecconi M, Rhodes A, Della Rocca G. From arterial pressures to cardiac output. JL Vincent (ed), 2008 Yearbook of intensive care and emergency medicine. Berlin: Springer Verlag, 2008; p. 591-600.10.1007/978-3-540-77290-3_55Search in Google Scholar

eISSN:
2457-5518
Langue:
Anglais