Accès libre

Oxidative Stress and Antioxidant Therapy in Critically Ill Polytrauma Patients with Severe Head Injury

À propos de cet article

Citez

1. Bains M, Hall ED. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta - Mol Basis Dis. 2012;1822:675–84.10.1016/j.bbadis.2011.10.017413401022080976Search in Google Scholar

2. Humberto J, Mantilla M, Fernando L, Arboleda G. Revista Colombiana de Anestesiología Anesthesia for patients with traumatic brain injury. Colomb J Anesthesiol. 2015;43:3–8.Search in Google Scholar

3. Ashafaq M, Varshney L, Khan MHA, et al. Neuromodulatory effects of hesperidin in mitigating oxidative stress in streptozotocin induced diabetes. Biomed Res Int. 2014;2014: 249031.10.1155/2014/249031409050325050332Search in Google Scholar

4. Sies H. Redox Biology Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–3.10.1016/j.redox.2015.01.002430986125588755Search in Google Scholar

5. Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, et al. Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: Role for the adenosine A2A receptor. Eur J Pharmacol. 2012;678:78–85.10.1016/j.ejphar.2011.12.04322265864Search in Google Scholar

6. Abdul-Muneer PM, Chandra N, Haorah J. Interactions of Oxidative Stress and Neurovascular Inflammation in the Pathogenesis of Traumatic Brain Injury. Mol Neurobiol. 2015;51:966-7910.1007/s12035-014-8752-324865512Search in Google Scholar

7. Bibi H, Vinokur V, Waisman D, et al. Zn/Ga-DFO iron-chelating complex attenuates the inflammatory process in a mouse model of asthma. Redox Biol. 2014;2:814–9.10.1016/j.redox.2014.06.009408535125009783Search in Google Scholar

8. Hall ED, Vaishnav R a., Mustafa AG. Antioxidant Therapies for Traumatic Brain Injury. Neurotherapeutics. 2010;7:51–61.10.1016/j.nurt.2009.10.021281846520129497Search in Google Scholar

9. Miller DM, Singh IN, Wang JA, Hall ED. Nrf2 – ARE activator carnosic acid decreases mitochondrial dysfunction, oxidative damage and neuronal cytoskeletal degradation following traumatic brain injury in mice. Exp Neurol. 2015;264:103–10.10.1016/j.expneurol.2014.11.008432392425432068Search in Google Scholar

10. Rodríguez-Rodríguez A, Egea-Guerrero JJ, León-Justel A, et al. Role of S100B protein in urine and serum as an early predictor of mortality after severe traumatic brain injury in adults. Clin Chim Acta. 2012;414:228–33.10.1016/j.cca.2012.09.02523031665Search in Google Scholar

11. Strathmann FG, Schulte S, Goerl K, Petron DJ. Blood-based biomarkers for traumatic brain injury: evaluation of research approaches, available methods and potential utility from the clinician and clinical laboratory perspectives. Clin Biochem. 2014;47:876–88.10.1016/j.clinbiochem.2014.01.02824486649Search in Google Scholar

12. Kumar RG, Diamond ML, Boles JA, et al. Acute CSF interleukin-6 trajectories after TBI: Associations with neuroinflammation, polytrauma, and outcome. Brain Behav Immun. 2014;45:253–62.10.1016/j.bbi.2014.12.02125555531Search in Google Scholar

13. Falcone T, Janigro D, Lovell R, et al. S100B blood levels and childhood trauma in adolescent inpatients. J Psychiatr Res. 2014;62:14–22.10.1016/j.jpsychires.2014.12.002441393025669696Search in Google Scholar

14. Cervellin G, Benatti M, Carbucicchio A, et al. Serum levels of protein S100B predict intracranial lesions in mild head injury. Clin Biochem. 2012;45:408–11.10.1016/j.clinbiochem.2012.01.00622285378Search in Google Scholar

15. Dal-Pizzol F, Ritter C, Cassol-Jr OJ, et al. Oxidative mechanisms of brain dysfunction during sepsis. Neurochem Res. 2010;35:1–12.10.1007/s11064-009-0043-419680806Search in Google Scholar

16. Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015;32C:121–30.10.1016/j.ceb.2015.02.00425726916Search in Google Scholar

17. Feneberg E, Steinacker P, Lehnert S, Böhm B, Mayer G, Otto M. Elevated glial fibrillary acidic protein levels in the cerebrospinal fluid of patients with narcolepsy. Sleep Med. 2013;14:692–4.10.1016/j.sleep.2013.04.01323746601Search in Google Scholar

18. Tennakoon AH, Izawa T, Wijesundera KK, et al. Immunohistochemical characterization of glial fibrillary acidic protein (GFAP)-expressing cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA). Exp Toxicol Pathol. 2015;67:53–63.10.1016/j.etp.2014.09.00825446803Search in Google Scholar

19. Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie L. Serum microRNA signatures identified by Solexa sequencing predict sepsis patients’ mortality: A prospective observational study. PLoS One. 2012;7:1–9.10.1371/journal.pone.0038885337614522719975Search in Google Scholar

20. Abdul-Muneer PM, Schuetz H, Wang F, et al. Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic Biol Med. 2013;60:282–91.10.1016/j.freeradbiomed.2013.02.029400717123466554Search in Google Scholar

21. Petzold A. Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease. Brain Res. 2014;1600:17–31.10.1016/j.brainres.2014.12.02725543069Search in Google Scholar

22. Kärkelä J, Bock E, Kaukinen S. CSF and serum brain-specific creatine kinase isoenzyme (CK-BB), neuron-specific enolase (NSE) and neural cell adhesion molecule (NCAM) as prognostic markers for hypoxic brain injury after cardiac arrest in man. J Neurol Sci. 1993;116:100–9.10.1016/0022-510X(93)90095-GSearch in Google Scholar

23. Prasad KN, Bondy SC. Common biochemical defects linkage between post-traumatic stress disorders, mild traumatic brain injury (TBI) and penetrating TBI. Brain Res. 2015;1599:103–14.10.1016/j.brainres.2014.12.03825553619Search in Google Scholar

24. El-Maraghi S, Yehia H, Hossam H, Yehia A, Mowafy H. The prognostic value of neuron specific enolase in head injury. Egypt J Crit Care Med. 2013;1:25–32.10.1016/j.ejccm.2012.12.002Search in Google Scholar

25. Klevay LM. Myelin and traumatic brain injury: the copper deficiency hypothesis. Med Hypotheses. 2013;81:995–8.10.1016/j.mehy.2013.09.01124120700Search in Google Scholar

26. Barco S, Gennai I, Reggiardo G, et al. Urinary homovanillic and vanillylmandelic acid in the diagnosis of neuroblastoma: report from the Italian Cooperative Group for Neuroblastoma. Clin Biochem. 2014;47:848–52.10.1016/j.clinbiochem.2014.04.01524769278Search in Google Scholar

27. Dash PK, Zhao J, Hergenroeder G, Moore AN. Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury. Neurotherapeutics. 2010;7:100–14.10.1016/j.nurt.2009.10.019508411720129502Search in Google Scholar

28. LeWitt P, Schultz L, Auinger P, Lu M. CSF xanthine, homovanillic acid, and their ratio as biomarkers of Parkinson’s disease. Brain Res. 2011;1408:88–97.10.1016/j.brainres.2011.06.057412002021784416Search in Google Scholar

29. Homsi S, Federico F, Croci N, et al. Minocycline effects on cerebral edema: Relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res. 2009;1291:122–32.10.1016/j.brainres.2009.07.03119631631Search in Google Scholar

30. Zampieri FG, Kellum J A, Park M, et al. Relationship between acid-base status and inflammation in the critically ill. Crit Care. 2014;18:R154.10.1186/cc13993422354525034180Search in Google Scholar

31. Ansari M a., Roberts KN, Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med. 2008;45:443–52.10.1016/j.freeradbiomed.2008.04.038258682718501200Search in Google Scholar

32. Wannhoff A, Bölck B, Kübler AC, Bloch W, Reuther T. Oxidative and nitrosative stress and apoptosis in oral mucosa cells after ex vivo exposure to lead and benzo[a]pyrene. Toxicol In Vitro. 2013;27:915–21.10.1016/j.tiv.2013.01.00723318731Search in Google Scholar

33. Hohl A, Gullo JDS, Silva CCP, et al. Plasma levels of oxidative stress biomarkers and hospital mortality in severe head injury: A multivariate analysis. J Crit Care. 2012;27:523.e11–523.e19.10.1016/j.jcrc.2011.06.00721803537Search in Google Scholar

34. Ji H-H, Huang G-L, Yin H-X, Xu P, Luo S-Y, Song J-K. Association between microRNA-196a2 rs11614913, microRNA-146a rs2910164, and microRNA-423 rs6505162 polymorphisms and esophageal cancer risk: A meta-analysis. Meta Gene. 2015;3:14–25.10.1016/j.mgene.2014.12.001472248626925372Search in Google Scholar

35. Muraoka T, Soh J, Toyooka S, et al. The degree of microRNA-34b/c methylation in serum-circulating DNA is associated with malignant pleural mesothelioma. Lung Cancer. 2013;82:485–90.10.1016/j.lungcan.2013.09.01724168922Search in Google Scholar

36. Li Y, Dalli J, Chiang N, Baron RM, Quintana C, Serhan CN. Plasticity of leukocytic exudates in resolving acute inflammation is regulated by MicroRNA and proresolving mediators. Immunity. 2013;39:885–98.10.1016/j.immuni.2013.10.011388851724238341Search in Google Scholar

37. Li G, Luna C, Qiu J, Epstein DL, Gonzalez P. Alterations in microRNA expression in stress-induced cellular senescence. Mech Ageing Dev. 2009;130:731–41.10.1016/j.mad.2009.09.002279506419782699Search in Google Scholar

38. Suh JH, Choi E, Cha M-J, et al. Up-regulation of miR-26a promotes apoptosis of hypoxic rat neonatal cardiomyocytes by repressing GSK-3β protein expression. Biochem Biophys Res Commun. 2012;423:404–10.10.1016/j.bbrc.2012.05.13822664106Search in Google Scholar

39. Miller A-F. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett. 2012;586:585–95.10.1016/j.febslet.2011.10.048544368122079668Search in Google Scholar

40. Gerbaud P, Petzold L, Thérond P, Anderson WB, Evain-Brion D, Raynaud F. Differential regulation of Cu, Zn- and Mn-superoxide dismutases by retinoic acid in normal and psoriatic human fibroblasts. J Autoimmun. 2005;24:69–78.10.1016/j.jaut.2004.10.00315725579Search in Google Scholar

41. Pilon M, Ravet K, Tapken W. The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim Biophys Acta. 2011;1807:989–98.10.1016/j.bbabio.2010.11.00221078292Search in Google Scholar

42. Comar JF, Babeto De Sá-Nakanishi A, De Oliveira AL, et al. Oxidative state of the liver of rats with adjuvant-induced arthritis. Free Radic Biol Med. 2013;58:144–53.10.1016/j.freeradbiomed.2012.12.00323246655Search in Google Scholar

43. Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J. 2006;28:219–42.10.1183/09031936.06.0005380516816350Search in Google Scholar

44. Lazzarino G, Di Pietro V, Lazzarino G, et al. Neuroglobin expression and oxidant/antioxidant balance after graded traumatic brain injury in the rat. Free Radic Biol Med. 2014;69:258–64.10.1016/j.freeradbiomed.2014.01.03224491879Search in Google Scholar

45. Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol Aspects Med. 2011;32:234–46.10.1016/j.mam.2011.10.00622020111Search in Google Scholar

46. Elkharaz J, Ugun-Klusek A, Constantin-Teodosiu D, et al. Implications for oxidative stress and astrocytes following 26S proteasomal depletion in mouse forebrain neurones. Biochim Biophys Acta - Mol Basis Dis. 2013;1832:1959–68.10.1016/j.bbadis.2013.07.00223851049Search in Google Scholar

47. Li L, Zhu K, Liu Y, et al. Targeting Thioredoxin-1 With Sirna Exacerbates Oxidative Stress Injury After Cerebral Ischemia / Reperfusion in Rats. 2015;284:815–23.Search in Google Scholar

48. Andrés NC, Fermento ME, Gandini NA, et al. Heme oxygenase-1 has antitumoral effects in colorectal cancer: involvement of p53. Exp Mol Pathol. 2014;97:321–31.10.1016/j.yexmp.2014.09.01225236576Search in Google Scholar

49. Yu JH, Cho SO, Lim JW, Kim N, Kim H. Ataxia telangiectasia mutated inhibits oxidative stress-induced apoptosis by regulating heme oxygenase-1 expression. Int J Biochem Cell Biol. 2015;60:147–56.10.1016/j.biocel.2015.01.00225592228Search in Google Scholar

50. Namba F, Go H, Murphy J A., et al. Expression level and subcellular localization of heme oxygenase-1 modulates its cytoprotective properties in response to lung injury: A mouse model. PLoS One. 2014;9:1–11.10.1371/journal.pone.0090936394497924599172Search in Google Scholar

51. Kurtz P, Claassen J, Helbok R, et al. Systemic glucose variability predicts cerebral metabolic distress and mortality after subarachnoid hemorrhage: a retrospective observational study. Crit Care. 2014;18:R89.10.1186/cc13857405669324887049Search in Google Scholar

52. Beschorner R, Adjodah D, Schwab JM, et al. Long-term expression of heme oxygenase-1 (HO-1, HSP-32) following focal cerebral infarctions and traumatic brain injury in humans. Acta Neuropathol. 2000;100:377–84.10.1007/s00401000020210985695Search in Google Scholar

53. Bhalla P, Dhawan DK. Protective Role of Lithium in Ameliorating the Aluminium-induced Oxidative Stress and Histological Changes in Rat Brain. Cell Mol Neurobiol. 2009;29:513–21.10.1007/s10571-008-9343-5Search in Google Scholar

54. Blass SC, Goost H, Tolba RH, et al. Time to wound closure in trauma patients with disorders in wound healing is shortened by supplements containing antioxidant micronutrients and glutamine: A PRCT. Clin Nutr. 2012;31:469–75.10.1016/j.clnu.2012.01.002Search in Google Scholar

55. Şener G, Toklu H, Kapucu C, et al. Melatonin protects against oxidative organ injury in a rat model of sepsis. Surg Today. 2005;35:52–9.10.1007/s00595-004-2879-1Search in Google Scholar

56. Dehghan F, Khaksari Hadad M, Asadikram G, Najafipour H, Shahrokhi N. Effect of melatonin on intracranial pressure and brain edema following traumatic brain injury: Role of oxidative stresses. Arch Med Res. 2013;44:251–8.10.1016/j.arcmed.2013.04.002Search in Google Scholar

57. Yürüker V, Naz M, Nilgün Ş. Reduction in traumatic brain injury-induced oxidative stress, apoptosis, and calcium entry in rat hippocampus by melatonin: Possible involvement of TRPM2 channels. Metab Brain Dis. 2015;30:223–31.10.1007/s11011-014-9623-3Search in Google Scholar

58. Bhalla a., Singhal M, Suri V, Malhotra S, Shafiq N, Varma S. Methylprednisolone in dengue patients with alarm signs: The MIDWAS study. Int J Infect Dis. 2014;21:323.10.1016/j.ijid.2014.03.1087Search in Google Scholar

59. Grasbon-Frodl EM, Nakao N, Brundin P. The lazaroid U-83836E improves the survival of rat embryonic mesencephalic tissue stored at 4°C and subsequently used for cultures or intracerebral transplantation. Brain Res Bull. 1996;39:341–7.10.1016/0361-9230(96)00001-9Search in Google Scholar

60. Porfire AS, Leucuţa SE, Kiss B, Loghin F, Pârvu AE. Investigation into the role of Cu/Zn-SOD delivery system on its antioxidant and antiinflammatory activity in rat model of peritonitis. Pharmacol Reports. 2014;66:670–6.10.1016/j.pharep.2014.03.01124948070Search in Google Scholar

61. Schmatz R, Perreira LB, Stefanello N, et al. Effects of resveratrol on biomarkers of oxidative stress and on the activity of delta aminolevulinic acid dehydratase in liver and kidney of streptozotocin-induced diabetic rats. Biochimie. 2012;94:374–83.10.1016/j.biochi.2011.08.00521864646Search in Google Scholar

62. Koz ST, Etem EO, Baydas G, et al. Effects of resveratrol on blood homocysteine level, on homocysteine induced oxidative stress, apoptosis and cognitive dysfunctions in rats. Brain Res. 2012;1484:29–38.10.1016/j.brainres.2012.09.02622995369Search in Google Scholar

63. Song L, Chen L, Zhang X, Li J, Le W. Resveratrol Ameliorates Motor Neuron Degeneration and Improves Survival in SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis. Biomed Res Int. 2014;2014:483501.10.1155/2014/483501409571125057490Search in Google Scholar

64. Gao J, Koshio S, Ishikawa M, Yokoyama S, Mamauag REP. Interactive effects of vitamin C and E supplementation on growth performance, fatty acid composition and reduction of oxidative stress in juvenile Japanese flounder Paralichthys olivaceus fed dietary oxidized fish oil. Aquaculture. 2014;422-423:84–90.10.1016/j.aquaculture.2013.11.031Search in Google Scholar

65. Fox ED, Heffernan DS, Cioffi WG, Reichner JS. Neutrophils from critically ill septic patients mediate profound loss of endothelial barrier integrity. Crit Care. 2013;17:R226.10.1186/cc13049405723024099563Search in Google Scholar

66. Chen Q, Jones D, Stone P, Ching LM, Chamley L. Vitamin C Enhances Phagocytosis of Necrotic Trophoblasts by Endothelial Cells and Protects the Phagocytosing Endothelial Cells from Activation. Placenta. 2009;30:163–8.10.1016/j.placenta.2008.11.00719070894Search in Google Scholar

67. Oudemans-van Straaten HM, Man A, de Waard MC. Vitamin C revisited. Crit Care. 2014;18:460.10.1186/s13054-014-0460-x442364625185110Search in Google Scholar

68. Nathens AB, Neff MJ, Jurkovich GJ, et al. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg. 2002;236:814–22.10.1097/00000658-200212000-00014142264812454520Search in Google Scholar

69. Nagaraja D, Noone ML, Bharatkumar VP, Christopher R. Homocysteine, folate and vitamin B12 in puerperal cerebral venous thrombosis. J Neurol Sci. 2008;272:43–7.10.1016/j.jns.2008.03.02118617193Search in Google Scholar

70. Şenol N, NazIroǧlu M, Yürüker V. N-acetylcysteine and selenium modulate oxidative stress, antioxidant vitamin and cytokine values in traumatic brain injury-induced rats. Neurochem Res. 2014;39:685–92.10.1007/s11064-014-1255-924519543Search in Google Scholar

71. Navarro-Yepes J, Zavala-Flores L, Anandhan A, et al. Antioxidant gene therapy against neuronal cell death. Pharmacol Ther. 2014;142:206–30.10.1016/j.pharmthera.2013.12.007395958324333264Search in Google Scholar

eISSN:
2393-1817
Langue:
Anglais