Accès libre

Vieta’s Formula about the Sum of Roots of Polynomials

 et   
23 sept. 2017
À propos de cet article

Citez
Télécharger la couverture

In the article we formalized in the Mizar system [2] the Vieta formula about the sum of roots of a polynomial anxn + an−1xn−1 + ··· + a1x + a0 defined over an algebraically closed field. The formula says that x1+x2++xn1+xn=an1an$x_1 + x_2 + \cdots + x_{n - 1} + x_n = - {{a_{n - 1} } \over {a_n }}$ , where x1, x2,…, xn are (not necessarily distinct) roots of the polynomial [12]. In the article the sum is denoted by SumRoots.

Langue:
Anglais
Périodicité:
1 fois par an
Sujets de la revue:
Mathématiques, Mathématiques générales, Informatique, Informatique, autres