Accès libre

The Axiomatization of Propositional Logic

  
23 févr. 2017
À propos de cet article

Citez
Télécharger la couverture

This article introduces propositional logic as a formal system ([14], [10], [11]). The formulae of the language are as follows φ ::= ⊥ | p | φφ. Other connectives are introduced as abbrevations. The notions of model and satisfaction in model are defined. The axioms are all the formulae of the following schemes

α ⇒ (βα),

(α ⇒ (βγ)) ⇒ ((αβ) ⇒ (αγ)),

β ⇒ ¬α) ⇒ ((¬βα) ⇒ β).

Modus ponens is the only derivation rule. The soundness theorem and the strong completeness theorem are proved. The proof of the completeness theorem is carried out by a counter-model existence method. In order to prove the completeness theorem, Lindenbaum’s Lemma is proved. Some most widely used tautologies are presented.

Langue:
Anglais
Périodicité:
1 fois par an
Sujets de la revue:
Informatique, Informatique, autres, Mathématiques, Mathématiques générales