1. bookVolume 35 (2016): Edition 2 (June 2016)
Détails du magazine
Première parution
24 Aug 2013
4 fois par an
Accès libre

Impact of sample size on principal component analysis ordination of an environmental data set: effects on eigenstructure

Publié en ligne: 28 May 2016
Volume & Edition: Volume 35 (2016) - Edition 2 (June 2016)
Pages: 173 - 190
Détails du magazine
Première parution
24 Aug 2013
4 fois par an

Anderson, M.J. & Wilis T.J. (2003). Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology, 84, 511–525. DOI: 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2.Search in Google Scholar

APHA, (1992). Standard methods for the examination of water and waste water. American Washington: Public Health Association.Search in Google Scholar

Bandalos, D.L. & Boehm-Kaufman M.R. (2009). Four common misconceptions in exploratory factor analysis. In C.E. Lance & R.J. Vandenberg (Eds.), Statistical and methodological myths and urban legends (pp. 61–87). New York: Routledge Publisher.Search in Google Scholar

Barrett, P.T. & Kline P. (1981). The observation to variable ratio in factor analysis. Personality Study and Group Behaviour, 1, 23−33.Search in Google Scholar

Bray, J.R. & Curtis J.T. (1957). An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr., 27, 325–349. DOI: 10.2307/1942268.10.2307/1942268Search in Google Scholar

Bryant, F.B. & Yarnold P.R. (1995). Principal components analysis and exploratory and confirmatory factor analysis. In L.G. Grimm & R.R. Yarnold (Eds.), Reading and understanding multivariate statistics (pp. 99−136). Washington: American Psycholgical Association.Search in Google Scholar

Burd, B.J.A., Nemec, A. & Brinkhurst R.O. (1990). The development and application of analytical methods in benthic marine faunal studies. Adv. Mar. Biol., 26, 169−247. DOI: 10.1016/S0065-2881(08)60201-1.10.1016/S0065-2881(08)60201-1Search in Google Scholar

Cadima, J. & Jolliffe I.T. (1995). Loadings and correlations in the interpretation of principal components. Journal of Applied Statistics, 22, 203−214. DOI: 10.1080/757584614.10.1080/757584614Search in Google Scholar

Cattell, R.B. (1966). The Scree test for the number of factors. Multivariate Behavioral Research, 1, 245–276. DOI: 10.1207/s15327906mbr0102_10.10.1207/s15327906mbr0102_1026828106Search in Google Scholar

Cattell, R.B. (1978). The scientific use of factor analysis in behavioral and life sciences. New York: Plenum Press.10.1007/978-1-4684-2262-7Search in Google Scholar

Chateau, F. & Lebart L. (1996). Assessing sample variability in the visualization techniques related to principal component analysis: Bootstrap and alternative simulation methods. In A. Prats (Ed.), Proceedings of COMPSTAT 2006. Heidelberg: Physica Verlag.Search in Google Scholar

Chatfield, C. & Collins A.J. (1980). Introduction to multivariate analysis. London, New York: Chapman & Hall.10.1007/978-1-4899-3184-9Search in Google Scholar

Comrey, A.L. & Lee H.B. (1992). A first course in factor analysis. London: Taylor and Francis.Search in Google Scholar

de Winter, J.C.F., Dodou, D. & Wieringa P.A. (2009). Exploratory factor analysis with small sample sizes. Multivariate Behavioral Research, 44, 147−181. DOI: 10.1080/00273170902794206.10.1080/0027317090279420626754265Search in Google Scholar

Dengler, J., Lobel, S. & Dolnik C. (2009). Species constancy depends on plot size a problem for vegetation classification and how it can be solved. J. Veg. Sci., 20, 754−766. DOI: 10.1111/j.1654-1103.2009.01073.x.10.1111/j.1654-1103.2009.01073.xSearch in Google Scholar

Diaconis, P. & Efron B. (1983). Computer-intensive methods in statistics. Sci. Am., 248, 116−130. doi:10.1038/scientificamerican0583-11610.1038/scientificamerican0583-116Search in Google Scholar

Dochtermann, N.A. & Jenkins S.H. (2011). Multivariate methods and small sample sizes. Ethology, 117, 95−101. DOI: 10.1111/j.1439-0310.2010.01846.x.10.1111/j.1439-0310.2010.01846.xSearch in Google Scholar

Fasham, M.J.R. (1977). The comparison of nonmetric multidimensional scaling, principal component analysis and reciprocal averaging for the ordination of simulated coenocline and coenoplanes. Ecology, 58, 551−561. DOI: 10.2307/193900410.2307/1939004Search in Google Scholar

Forcino, F.L. (2012). Multivariate assessment of the required sample size for community paleoecological research. Palaeogeo. Palaeoclimatol. Palaeoecol., 315−316, 134−141. DOI: 10.1016/j.palaeo.2011. in Google Scholar

Gamito, S. & Raffaelli D. (1992). The sensitivity of several ordination methods to sample replication in benthic surveys. J. Exp. Mar. Biol. Ecol., 164, 221−232. DOI: 10.1016/0022-0981(92)90176-B.10.1016/0022-0981(92)90176-BSearch in Google Scholar

Gauch, H.G. & Whittaker R.H. (1972). Comparison of ordination techniques. Ecology, 53, 868–875. DOI: 10.2307/1934302.10.2307/1934302Search in Google Scholar

Gauch, H.G., Whittaker R.H. & Wentworth T.R. (1977). A comparative study of reciprocal averaging and other ordination techniques. J. Ecol., 65, 157–174. DOI: 10.2307/2259071.10.2307/2259071Search in Google Scholar

Gauch, H.G., Whittaker R.H. & Singer S.B. (1981). A comparative study of nonmetric ordinations. J. Ecol., 69, 135–152. DOI: 10.2307/225982110.2307/2259821Search in Google Scholar

Gehlhausen, S.M., Schwartz, M.W. & Augspurger C.K. (2000). Vegetation and microclimatic edge effects in two mixed mesophytic forest fragments. Plant Ecol., 147, 21−35. DOI: 10.1023/A:1009846507652.10.1023/A:1009846507652Search in Google Scholar

Goff, F.G. & Mitchell R. (1975). A comparison of species ordination results from plot and stand data. Vegetatio, 31, 15−22. DOI: 10.1007/BF00127871.10.1007/BF00127871Search in Google Scholar

Goodall, D.W. (1953). Objective methods for the classification of vegetation. III. An essay in the use of factor analysis. Aust. J. Bot., 1, 39−63. DOI: 10.1071/BT9530039.10.1071/BT9530039Search in Google Scholar

Gorsuch, R.L. (1983). Factor analysis. Hillsdale NJ: Lawrence Erlbaum Associates.Search in Google Scholar

Hatcher, L. (1994). A step-by-step approach to using the SAS system for factor analysis and structural equation modeling. Cary: SAS Institute.Search in Google Scholar

Hill, M.O. (1973). Reciprocal averaging: an eigenvector method of ordination. J. Ecol., 61, 237−249. DOI: 10.2307/2258931.10.2307/2258931Search in Google Scholar

Hill, M.O. & Gauch H.G. (1980). Detrended correspondence analysis: an improved technique. Vegetatio, 42, 47−58. DOI: 10.1007/BF00048870.10.1007/BF00048870Search in Google Scholar

Hirosawa, Y., Marsh, S.E. & Kliman D.H. (1996). Application of standardized principal component analysis to land-cover characterization using multi temporal AVHRR data. Remote Sens. Environ., 58, 267−281. DOI: 10.1016/S0034-4257(96)00068-5.10.1016/S0034-4257(96)00068-5Search in Google Scholar

Hirst, C.N. & Jackson D.A. (2007). Reconstructing community relationships: the impact of sampling error, ordination approach and gradient length. Divers. Distrib., 13, 361–371. DOI: 10.1111/j.1472-4642.2007.00307.x.10.1111/j.1472-4642.2007.00307.xSearch in Google Scholar

Hutcheson, G. & Sofroniou N. (1999). The multivariate social scientist: Introductory statistics using generalized linear models. London: Sage Publication.10.4135/9780857028075Search in Google Scholar

Jackson, D.A. (1993). Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology, 74, 2204−2214. DOI: 10.2307/1939574.10.2307/1939574Search in Google Scholar

Jackson, J.A. (1991). A user’s guide to principal component analysis. New York: Wiley Inter Science.10.1002/0471725331Search in Google Scholar

James, F.C. & McCulloch C.E. (1990). Multivariate analysis in ecology and systematics: panacea or Pandoras box. Annu. Rev. Ecol. Evol. Syst., 21, 129−166. DOI: 10.1146/annurev.es.21.110190.001021.10.1146/annurev.es.21.110190.001021Search in Google Scholar

Joliffe, I. (2002). Principal component analysis. New York: Springer-Verlag.Search in Google Scholar

Kendall, M. (1980). Multivariate analysis. London: Charles Griffin.Search in Google Scholar

Kline, P. (1979). Psychometrics and psychology. London: Academic Press.Search in Google Scholar

Knox, R.G. & Peet R.K. (1989). Bootstrapped ordination: a method for estimating sampling effects in indirect gradient analysis. Vegetatio, 80, 153−165. DOI: 10.1007/BF00048039.10.1007/BF00048039Search in Google Scholar

Lawley, D.N. & Maxwell A.E. (1971). Factor analysis as a statistical method. New York: Macmillan.Search in Google Scholar

Legendre, P. & Birks H.J.B. (2012). Clustering and partitioning. In H.J.B. Birks, A.F. Lotter, S. Juggins & J.P. Smol (Eds.), Tracking environmental change using lake sediments Vol. 5: Data handling and numerical techniques (pp. 167−200). Dordrecht: Springer. DOI: 10.1007/978-94-007-2745-8_7.10.1007/978-94-007-2745-8_7Search in Google Scholar

MacCallum, R.C., Widaman, K.F., Zhang, S. & Hong S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84−99. DOI: 10.1037/1082-989X. in Google Scholar

MacCallum, R.C., Widaman, K.F., Preacher, K.J. & Hong S. (2001). Sample size in factor analysis: The role of model error. Multivariate Behavioral Research, 36, 611–637. DOI: 10.1207/S15327906MBR3604_06.10.1207/S15327906MBR3604_0626822184Search in Google Scholar

Manjarres-Martinez, L.M., Gutiérrez-Estrada, J.C., Hernando, J.J.A. & Soriguer M.C. (2012). The performance of three ordination methods applied to demersal fish data sets: stability and interpretability. Fish. Manag. Ecol., 19, 200−213. DOI: 10.1111/j.1365-2400.2011.00817.x.10.1111/j.1365-2400.2011.00817.xSearch in Google Scholar

Manly, B.F.J. (1998). Randomization, bootstrap and Monte Carlo methods in biology. London: Chapman & Hall.Search in Google Scholar

Minchin, P.R. (1987). An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio, 69, 89−107. DOI: 10.1007/BF00038690.10.1007/BF00038690Search in Google Scholar

Mundfrom, D.J., Shaw, D.G. & Ke T.L. (2005). Minimum sample size recommendations for conducting factor analyses. International Journal of Testing, 5, 159−168. DOI: 10.1207/s15327574ijt0502_4.10.1207/s15327574ijt0502_4Search in Google Scholar

Okland, R.H., Eilersten, O. & Okland T. (1990). On the relationship between sample size and beta diversity in boreal coniferous forests. Vegetatio, 87, 187−190. DOI: 10.1007/BF00042954.10.1007/BF00042954Search in Google Scholar

Orloci, L. (1966). Geometric models in ecology 1. The theory and application of some ordination methods. J. Ecol., 54, 193−215. DOI: 10.2307/2257667.10.2307/2257667Search in Google Scholar

Orloci, L. (1978). Multivariate analysis in vegetation research. The Hague: Junk.Search in Google Scholar

Osborne, J.W. & Costello A.B. (2004). Sample size and subject to item ratio in principal components analysis. Practical Assessment Research & Evaluation, 9, 15−23.Search in Google Scholar

Otypkova, Z. & Chytry M. (2006). Effects of plot size on the ordination of vegetation samples. J. Veg. Sci., 17, 465−472. DOI: 10.1111/j.1654-1103.2006.tb02467.x.10.1111/j.1654-1103.2006.tb02467.xSearch in Google Scholar

Peres-Neto, P.R., Jackson, D.A. & Somers K.M. (2003). Giving meaningful interpretation to ordination axes: assessing loading significance in principal component analysis. Ecology, 84, 2347–2363. http://www.jstor.org/stable/345014010.1890/00-0634Search in Google Scholar

Peres-Neto, P.R., Jackson, D.A. & Somers K.M. (2005). How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Computational Statistics and Data Analysis, 49, 974−997. DOI: 10.1016/j.csda.2004. in Google Scholar

Pillar, V. de P. (1999). The bootstrapped ordination re-examined. J. Veg. Sci., 10, 895−902. DOI: 10.2307/3237314.10.2307/3237314Search in Google Scholar

Preacher, K.J. & MacCallum R.C. (2002). Exploratory factor analysis in behavioral genetics research: Factor recovery with small sample sizes. Behav. Genet., 32, 153−161. DOI: 10.1023/A:1015210025234.10.1023/A:1015210025234Search in Google Scholar

Rao, C.R. (1964). The use and interrelation of principal component analysis in applied research. Sankhya (Ser. A), 26, 329−358. http://www.jstor.org/stable/25049339Search in Google Scholar

Richman, M.B. (1988). A cautionary note concerning a commonly applied eigen analysis procedure. Tellus B, 40, 50−58. DOI: 10.1111/j.1600-0889.1988.tb00212.x.10.1111/j.1600-0889.1988.tb00212.xSearch in Google Scholar

Shaukat, S.S. (1985). Approaches to the analysis of ruderal weed vegetation. PhD. thesis, University of Western Ontario, London, Canada.Search in Google Scholar

Shaukat, S.S. & Uddin M. (1989a). A comparison of principal component and factor analysis as an ordination model with reference to desert ecosystem. Coenoses, 4, 15−28. http://www.jstor.org/stable/43461254Search in Google Scholar

Shaukat, S.S. & Uddin M. (1989b). An application of canonical and principal component analysis to the study of desert environment. Abstracta Botanica (Budapest), 13, 17−45. http://www.jstor.org/stable/43519176Search in Google Scholar

Shaukat, S.S. & Siddiqui I.A. (2005). Essentials of Mathematical Ecology: Computer Programs in BASIC, FORTRAN and C++. Karachi: Farquan Publishers.Search in Google Scholar

Shaukat, S.S., Sheikh I.H. & Siddiqui I.A. (2005). An application of correspondence analysis, Detrended correspondence analysis and Canonical correspondence analysis to the vegetation and environment of calcareous hills around Karachi. Int. J. Biol. Biotechnol., 2, 617−627.Search in Google Scholar

Stauffer, D. F., Garton E.O. & Steinhorst R.K. (1985). A comparison of principal component from real and random data. Ecology, 66, 1693−1698. DOI: 10.2307/2937364.10.2307/2937364Search in Google Scholar

Swan, J.M.A. & Dix R.L. (1966). The phytosociological structure of upland forest at Candle Lake, Saskatchewan. J. Ecol., 54, 13−40. DOI: 10.2307/2257657.10.2307/2257657Search in Google Scholar

Ter Braak, C.J.F. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167−1179. DOI: 10.2307/1938672.10.2307/1938672Search in Google Scholar

Velicer, W.F. & Fava J.L. (1998). The effects of variable and subject sampling on factor pattern recovery. Psychological Methods, 3, 231−251. DOI: 10.1037/1082-989X. in Google Scholar

Walker, S.C. & Jackson D.A. (2011). Random-effects ordination: describing and predicting multivariate correlations and co-occurrences. Ecol. Monogr., 81, 635–663. http://www.jstor.org/stable/2320847810.1890/11-0886.1Search in Google Scholar

Whittaker, R.J. (1987). An application of detrended correspondence analysis and nonmetric multidimensional scaling to the identification and analysis of environmental factor complexes and vegetation structures. J. Ecol., 75, 363−376. DOI: 10.2307/2260424.10.2307/2260424Search in Google Scholar

Wikum, D.A. & Wali M.K. (1974). Analysis of a North Dakota gallery forest: Vegetation in relation to topographic and soil gradients. Ecol. Monogr., 44, 441–464. DOI: 10.2307/1942449.10.2307/1942449Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo