Accès libre

Comparative Review of Artificial Light Sources for Solar-Thermal Biomass Conversion Research Applications

À propos de cet article

Citez

[1] Adib R, Folkecenter M, Eckhart M, El-Ashry M, Hales D, Hamilton K, et.al. Renewables 2018. Global Status Report. Paris: REN21; 2018. ISBN 9783981891133.Search in Google Scholar

[2] Chew JJ, Doshi V. Recent advances in biomass pretreatment - Torrefaction fundamentals and technology. Renew Sustain Energy Rev. 2015:15:4212-4222. DOI: 10.1016/j.rser.2011.09.017.10.1016/j.rser.2011.09.017Open DOISearch in Google Scholar

[3] Basu P. Biomass Gasification and Pyrolysis Handbook. Academic Press, Elsevier; 2010. ISBN 9780123749888.Search in Google Scholar

[4] Prins MJ, Ptasinski KJ, Janssen FJJG. More efficient biomass gasification via torrefaction. Energy. 2006:31:3458-3470. DOI: 10.1016/j.energy.2006.03.008.10.1016/j.energy.2006.03.008Open DOISearch in Google Scholar

[5] Werle S, Wilk RK. A review of methods for the thermal utilization of sewage sludge: The Polish perspective. Renew Energy. 2010:35:1914-1919. DOI: 10.1016/j.renene.2010.01.019.10.1016/j.renene.2010.01.019Open DOISearch in Google Scholar

[6] Zeng K, Gauthier D, Minh DP, Weiss-Hortala E, Nzihou A, Flamant G. Characterization of solar fuels obtained from beech wood solar pyrolysis. Fuel. 2017:188:285-293. DOI: 10.1016/j.fuel.2016.10.036.10.1016/j.fuel.2016.10.036Open DOISearch in Google Scholar

[7] Çepelioğullar Ö, Pütün AE. Products characterization study of a slow pyrolysis of biomass-plastic mixtures in a fixed-bed reactor. J Anal Appl Pyrolysis. 2014:110:363-374. DOI: 10.1016/j.jaap.2014.10.002.10.1016/j.jaap.2014.10.002Open DOISearch in Google Scholar

[8] Mangut V, Sabio E, Gañán J, González JF, Ramiro A, González CM et al. Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Fuel Process Technol. 2006;87:109-115. DOI: 10.1016/j.fuproc.2005.08.006.10.1016/j.fuproc.2005.08.006Search in Google Scholar

[9] Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog Energy Combust Sci. 2017:62:33-86. DOI: 10.1016/j.pecs.2017.05.004.10.1016/j.pecs.2017.05.004Open DOISearch in Google Scholar

[10] Zeng K, Gauthier D, Soria J, Mazza G, Flamant G. Solar pyrolysis of carbonaceous feedstocks: A review. Solar Energy. 2017:156:73-92. DOI: 10.1016/j.solener.2017.05.033.10.1016/j.solener.2017.05.033Search in Google Scholar

[11] Isemin R, Mikhalev A, Klimov D, Grammelis P, Margaritis N, Kourkoumpas DS et al. Torrefaction and combustion of pellets made of a mixture of coal sludge and straw. Fuel. 2017:210:859-865. DOI: 10.1016/j.fuel.2017.09.032.10.1016/j.fuel.2017.09.032Open DOISearch in Google Scholar

[12] Smets A, Jager K, Isabella O, Swaai RV, Zeman M. Solar Energy: The Physics and Engineering of Photovoltaic Conversion Technologies and Systems. Cambridge, England: UIT; 2016. ISBN 9781609860325.Search in Google Scholar

[13] Tawfik M, Tonnellier X, Sansom C. Light source selection for a solar simulator for thermal applications: A review. Renew Sustain Energy Rev. 2018:90:802-813. DOI: 10.1016/j.rser.2018.03.059.10.1016/j.rser.2018.03.059Open DOISearch in Google Scholar

[14] Grandi G, Ienina A, Bardhi M. Effective low-cost hybrid LED-halogen solar simulator. IEEE Trans Ind Appl. 2014;50:3055-3064. DOI: 10.1109/TIA.2014.2330003.10.1109/TIA.2014.2330003Open DOISearch in Google Scholar

[15] Luque A, Hegedus S, editors. Handbook of Photovoltaic Science and Engineering. Wiley; 2011. DOI: 10.1002/9780470974704. ISBN 9780470721698.10.1002/9780470974704.ISBN9780470721698Open DOISearch in Google Scholar

[16] Kasten F, Young AT. Revised optical air mass tables and approximation formula. Appl Optics. 1989;28:4735-4738. DOI: 10.1364/AO.28.004735.10.1364/AO.28.004735Open DOISearch in Google Scholar

[17] Ekman BM, Brooks G, Rhamdhani MA. Development of high flux solar simulators for solar thermal research. Energy Technol. 2016;141:149-159. DOI: 10.1007/978-3-319-48220-0_17.10.1007/978-3-319-48220-0_17Open DOISearch in Google Scholar

[18] Chawla MK. A step by step guide to selecting the “right” solar simulator for your solar cell testing application. Photo Emission Tech Inc. 2017:1-6.Search in Google Scholar

[19] Georgescu A, Damache G, Gîrţu MA. Class A small area solar simulator for dye-sensitized solar cell testing. J Optoelectron Adv Mater. 2008;10:3003-3007.Search in Google Scholar

[20] Sciencetech Inc. Light Sources Overview. http://www.sciencetech-inc.com/all-products/light-sources/light-sources.html, 2018.Search in Google Scholar

[21] Esen V, Sağlam Ş, Oral B. Light sources of solar simulators for photovoltaic devices: A review. Renew Sustain Energy Rev. 2017;77:1240-1250. DOI: 10.1016/j.rser.2017.03.062.10.1016/j.rser.2017.03.062Open DOISearch in Google Scholar

[22] Pozzobon V, Salvador S, Bézian JJ, El-Hafi M, Le Maoult Y, Flamant G. Radiative pyrolysis of wet wood under intermediate heat flux: Experiments and modelling. Fuel Process Technol. 2014;128:319-330. DOI: 10.1016/j.fuproc.2014.07.007.10.1016/j.fuproc.2014.07.007Open DOISearch in Google Scholar

[23] Kongtragool B, Wongwises S. A four power-piston low-temperature differential Stirling engine using simulated solar energy as a heat source. Solar Energy. 2008;82:493-500. DOI: 10.1016/j.solener.2007.12.005.10.1016/j.solener.2007.12.005Open DOISearch in Google Scholar

[24] Boulet P, Parent G, Acem Z, Collin A, Försth M, Bal N, et al. Radiation emission from a heating coil or a halogen lamp on a semitransparent sample. Int J Therm Sci. 2014;77:223-232. DOI: 10.1016/j.ijthermalsci.2013.11.006.10.1016/j.ijthermalsci.2013.11.006Open DOISearch in Google Scholar

[25] Authier O, Lédé J. The image furnace for studying thermal reactions involving solids. Application to wood pyrolysis and gasification, and vapours catalytic cracking. Fuel. 2013;107:555-569. DOI: 10.1016/j.fuel.2013.01.041.10.1016/j.fuel.2013.01.041Open DOISearch in Google Scholar

[26] Boutin O, Ferrer M, Lédé J. Radiant flash pyrolysis of cellulose - Evidence for the formation of short life time intermediate liquid species. J Anal Appl Pyrolysis. 1998;47:13-31. DOI: 10.1016/S0165-2370(98)00088-6.10.1016/S0165-2370(98)00088-6Open DOISearch in Google Scholar

[27] Grønli M, Melaaen MC. Mathematical model for wood pyrolysis - Comparison of experimental measurements with model predictions. Energy Fuels. 2000;14:791-800. DOI: 10.1021/ef990176q.10.1021/ef990176qOpen DOISearch in Google Scholar

[28] Lédé J. Comparison of contact and radiant ablative pyrolysis of biomass. J Anal Appl Pyrolysis. 2003;70:601-618. DOI: 10.1016/S0165-2370(03)00043-3.10.1016/S0165-2370(03)00043-3Open DOISearch in Google Scholar

[29] Rony AH, Mosiman D, Sun Z, Qin D, Zheng Y, Boman JH et al. A novel solar powered biomass pyrolysis reactor for producing fuels and chemicals. J Anal Appl Pyrolysis. 2018;132:19-32. DOI: 10.1016/j.jaap.2018.03.020.10.1016/j.jaap.2018.03.020Open DOISearch in Google Scholar

[30] Boutin O, Ferrer M, Lédé J. Flash pyrolysis of cellulose pellets submitted to a concentrated radiation: Experiments and modelling. Chem Eng Sci. 2002;57:15-25. DOI: 10.1016/S0009-2509(01)00360-8.10.1016/S0009-2509(01)00360-8Open DOISearch in Google Scholar

[31] Sobek S, Werle S. Solar pyrolysis of waste biomass: Part 1 reactor design. Renew Energy. 2019;143:1939-1948. DOI: 10.1016/j.renene.2019.06.011.10.1016/j.renene.2019.06.011Open DOISearch in Google Scholar

eISSN:
1898-6196
Langue:
Anglais