Accès libre

Voltammetric Determination of Aclonifen at a Silver Amalgam Electrode in Drinking and River Water

À propos de cet article

Citez

[1] Cobucci T, Prates HT, Falcão CLM, Rezende MMV. Effect of imazamox, fomesafen, and acifluorfen soil residue on rotational crops. Weed Sci. 1998;46(2):258-263. http://www.jstor.org/stable/4045945.10.1017/S0043174500090500Search in Google Scholar

[2] Drewes M, Tietjen K, Sparks TC. High-Throughput Screening in Agrochemical Research. In: Jeschke P, Krämer W, Schirmer U, Witschel M, editors. Modern Methods in Crop Protection Research. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.; 2013.10.1002/9783527655908.ch1Search in Google Scholar

[3] Kilinc Ö, Reynaud S, Perez L, Tissut M, Ravanel P. Physiological and biochemical modes of action of the diphenylether aclonifen. Pestic Biochem Physiol. 2009;93:65-71. DOI: 10.1016/j.pestbp.2008.11.008.10.1016/j.pestbp.2008.11.008Search in Google Scholar

[4] Scrano L, Bufo SA, D’Auria M, Meallier P, Behechti A, Shramm KW. Photochemistry and photoinduced toxicity of acifluorfen, a diphenyl-ether herbicide. J Environ Qual. 2002;31:268-274. DOI: 10.2134/jeq2002.0268.10.2134/jeq2002.0268Search in Google Scholar

[5] Teshima R, Nakamura R, Nakajima O, Hachisuka A, Sawada J-I. Effect of two nitrogenous diphenyl ether pesticides on mast cell activation. Toxicol Lett. 2004;150:277-283. DOI: 10.1016/j.toxlet.2004.02.001.10.1016/j.toxlet.2004.02.001Search in Google Scholar

[6] Francis BM, Metcalf RL, Lewis PA, Chernoff N. Maternal and developmental toxicity of halogenated 4'-nitrodiphenyl ethers in mice. Teratology. 1999;59:69-80. DOI: 10.1002/(SICI)1096-9926(199902)59: 2<69::AID-TERA1>3.0.CO;2-I.Search in Google Scholar

[7] Laganà A, Fago G, Fasciani L, Marino A, Mosso M. Determination of diphenyl-ether herbicides and metabolites in natural waters using high-performance liquid chromatography with diode array tandem mass spectrometric detection. Anal Chim Acta. 2000;414:79-94. DOI: 10.1016/S0003-2670(00)00813-8.10.1016/S0003-2670(00)00813-8Search in Google Scholar

[8] Sheu H-L, Sung Y-H, Melwanki MB, Huang S-D. Determination of diphenylether herbicides in water samples by solid-phase microextraction coupled to liquid chromatography. J Sep Sci. 2006;29:2647-2652. DOI: 10.1002/jssc.200600155.10.1002/jssc.20060015517313105Search in Google Scholar

[9] Pang G-F, Liu Y-M, Fan C-L, Zhang J-J, Cao Y-Z, Li X-M, et al. Simultaneous determination of 405 pesticide residues in grain by accelerated solvent extraction then gas chromatography-mass spectrometry or liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2006;384:1366-1408. DOI: 10.1007/s00216-005-0237-9.10.1007/s00216-005-0237-916520938Search in Google Scholar

[10] Perreau F, Einhorn J. Determination of frequently detected herbicides in water by solid-phase microextraction and gas chromatography coupled to ion-trap tandem mass spectrometry. Anal Bioanal Chem. 2006;386:1449-1456. DOI: 10.1007/s00216-006-0693-x.10.1007/s00216-006-0693-x16937091Search in Google Scholar

[11] Sagratini G, Ametisti M, Canella M, Cristalli G, Francoletti E, Giardina D, et al. Well water in central Italy: Analysis of herbicide residues as potential pollutants of untreated crops. Fresenius Environ Bull. 2007;16:973-979.Search in Google Scholar

[12] Cervera MI, Portoles T, Lopez FJ, Beltran J, Hernandez F. Screening and quantification of pesticide residues in fruits and vegetables making use of gas chromatography/quadrupole time-of-flight mass spectrometry with atmospheric pressure chemical ionization. Anal Bioanal Chem. 2014;406(27):6843-6855. DOI: 10.1007/s00216-014-7853-1.10.1007/s00216-014-7853-124828980Search in Google Scholar

[13] Fillatre Y, Rondeau D, Daguin A, Jadas-Hecart A, Communal P-Y. Multiresidue determination of 256 pesticides in lavandin essential oil by LC/ESI/sSRM: advantages and drawbacks of a sampling method involving evaporation under nitrogen. Anal Bioanal Chem. 2013;406(5):1541-1550. DOI: 10.1007/s00216-013-7553-210.1007/s00216-013-7553-224366405Search in Google Scholar

[14] Liang HC, Bilon N, Hay MT. Analytical methods for pesticide residues in the water environment. Water Environ Res. 2014;87(10):1923-1937. DOI: 10.2175/106143015X14338845156542.10.2175/106143015X1433884515654226420110Search in Google Scholar

[15] Cai J-R, Zhou L-N, Han E. A sensitive amperometric acetylcholine biosensor based on carbon nanosphere and acetylcholinesterase modified electrode for detection of pesticide residues. Anal Sci. 2014;30(6):669-673. DOI: 10.2116/analsci.30.669.10.2116/analsci.30.66924919672Search in Google Scholar

[16] Li C-P, Fan S, Yin C, Zhang N, Du S, Zhao H. Carboxylic silica nanosheet-platinum nanoparticle modified glass carbon electrodes for pesticide detection. Anal Methods. 2014;6(6):1914-1921. DOI: 10.1039/C3AY42305K.10.1039/C3AY42305KSearch in Google Scholar

[17] Songa EA, Somerset VS, Waryo T, Baker PGL, Iwuoha EI. Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples (Report). Pure Appl Chem. 2009;81(1):123-139. DOI: 10.1351/PAC-CON-08-01-15.10.1351/PAC-CON-08-01-15Search in Google Scholar

[18] Barek J, Cabalkova D, Fischer J, Navratil T, Peckova K, Yosypchuk B. Voltammetric determination of the herbicide Bifenox in drinking and river water using a silver solid amalgam electrode. Environ Chem Lett. 2011;9(1):83-86. DOI: 10.1007/s10311-009-0250-x.10.1007/s10311-009-0250-xSearch in Google Scholar

[19] Brycht M, Skrzypek S, Nosal-Wiercilska A, Smarzewska S, Guziejewski D, Ciesielski W, et al. The new application of renewable silver amalgam film electrode for the electrochemical reduction of nitrile, cyazofamid, and its voltammetric determination in the real samples and in a commercial formulation. Electrochim Acta. 2014;134:302-308. DOI: 10.1016/j.electacta.2014.04.143.10.1016/j.electacta.2014.04.143Search in Google Scholar

[20] Smarzewska S, Metelka R, Guziejewski D, Skowron M, Skrzypek S, Brycht M, et al. Voltammetric behaviour and quantitative determination of pesticide iminoctadine. Anal Methods. 2014;6(6):1884-1889. DOI: 10.1039/C3AY42038H.10.1039/c3ay42038hSearch in Google Scholar

[21] Skrzypek S, Smarzewska S, Ciesielski W. Determination of Blasticidin S in spiked rice using SW voltammetry with a renewable silver amalgam film electrode. Electroanalysis. 2012;24(5):1153-1159. DOI: 10.1002/elan.201100715.10.1002/elan.201100715Search in Google Scholar

[22] Inam R, Cakmak Z. A simple square wave voltammetric method for the determination of Aclonifen herbicide. Anal Methods. 2013;5(13):3314-3320. DOI: 10.1039/C3AY40333E10.1039/c3ay40333eSearch in Google Scholar

[23] Ni Y, Wang L, Kokot S. Simultaneous determination of three herbicides by differential pulse voltammetry and chemometrics. J Environ Sci Health. Part B. Pesticides Food Contamin Agricult Wastes. 2011;46(4):328-335. DOI: 10.1080/03601234.2011.559888.10.1080/03601234.2011.55988821512931Search in Google Scholar

[24] Silva TA, Figueiredo LCS, Vicentini FC, Deroco PB, Rocha-Filho RC, Fatibello-Filho O. Square-wave voltammetric determination of the herbicide bentazon using a cathodically pretreated boron-doped diamond electrode. Chem Sensors. 2014;4:1-6. http://www.cognizure.com/abstract.aspx?p=200638412.Search in Google Scholar

[25] Yosypchuk B, Barek J. Analytical applications of solid and paste amalgam electrodes. Crit Rev Anal Chem. 2009;39:189-203. DOI: 10.1080/10408340903011838.10.1080/10408340903011838Search in Google Scholar

[26] Fischer J, Dejmkova H, Barek J. Electrochemistry of pesticides and its analytical applications. Curr Org Chem. 2011;15:2923-2935. DOI: 10.2174/138527211798357146.10.2174/138527211798357146Search in Google Scholar

[27] Gajdar J, Horakova E, Barek J, Fischer J, Vyskočil V. Recent applications of mercury electrodes for monitoring of pesticides: A critical review. Electroanalysis. 2016;28:2659-2671. DOI: 10.1002/elan.201600239.10.1002/elan.201600239Search in Google Scholar

[28] Yosypchuk B, Novotný L. Electrodes of nontoxic solid amalgams for electrochemical measurements. Electroanalysis. 2002;14:1733-1738. DOI: 10.1002/elan.200290018.10.1002/elan.200290018Search in Google Scholar

[29] Bordin DCM, Alves MNR, Cabrices OG, Campos EGd, Martinis BSD. A rapid assay for the simultaneous determination of nicotine, cocaine and metabolites in meconium using disposable pipette extraction and gas chromatography/mass spectrometry (GC/MS). J Anal Toxicol. 2013;38(1):31-38. DOI: 10.1093/jat/bkt092.10.1093/jat/bkt09224272386Search in Google Scholar

eISSN:
1898-6196
Langue:
Anglais