Accès libre

Improved mobility models for charge transport in graphene

À propos de cet article

Citez

1. V. Romano, A. Majorana, and M. Coco, DSMC method consistent with the Pauli exclusion principle and comparison with deterministic solutions for charge transport in graphene, Journal of Computational Physics, vol. 302, pp. 267–284, 2015.10.1016/j.jcp.2015.08.047Search in Google Scholar

2. A. Majorana, G. Mascali, and V. Romano, Charge transport and mobility in monolayer graphene, J. Math. Industry, no. 7:4, doi:10.1186/s13362-016-0027-3, 2016.10.1186/s13362-016-0027-32016Open DOISearch in Google Scholar

3. M. Coco, A. Majorana, and V. Romano, Cross validation of discontinuous Galerkin method and Monte Carlo simulations of charge transport in graphene on substrate, Ricerche di matematica, vol. 66, pp. 201–220, 2017.10.1007/s11587-016-0298-4Search in Google Scholar

4. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Reviews of Modern Physics, vol. 81, pp. 109–162, 2009.10.1103/RevModPhys.81.109Search in Google Scholar

5. A. Majorana, G. Nastasi, and V. Romano, Simulation of bipolar charge transport in graphene by using a discontinuous Galerkin method, Communications in Computational Physics, vol. 26, no. 1, pp. 114–134, 2019.10.4208/cicp.OA-2018-0052Search in Google Scholar

6. Y. Cheng, I. M. Gamba, A. Majorana, and C.-W. Shu, A discontinuous Galerkin solver for Boltzmann-Poisson systems in nano devices, Comput. Methods Appl. Mech. Engrg., vol. 198, no. 37-40, pp. 3130– 3150, 2009.Search in Google Scholar

7. Y. Cheng, I. M. Gamba, A. Majorana, and C.-W. Shu, A brief survey of the discontinuous Galerkin method for the Boltzmann-Poisson equations, Boletin de la Sociedad Espanola de Matematica Aplicada, vol. 54, pp. 47–64, 2011.10.1007/BF03322587Search in Google Scholar

8. V. E. Dorgan, M.-H. Bae, and E. Pop, Mobility and saturation velocity in graphene on SiO2, Appl. Phys. Lett., vol. 97, p. 082112, 2010.Search in Google Scholar

9. M. Coco, A. Majorana, G. Nastasi, and V. Romano, High-field mobility in graphene on substrate with a proper inclusion of the Pauli exclusion principle, Atti dell’Accademia Peloritana dei Pericolanti, in press.Search in Google Scholar

10. G. Mascali and V. Romano, Charge transport in graphene including thermal effetcs, SIAM J. Appl. Mathematics, vol. 77, no. 2, pp. 593–613, 2017.10.1137/15M1052573Search in Google Scholar

11. M. Coco and V. Romano, Simulation of Electron-Phonon Coupling and Heating Dynamics in Suspended Monolayer Graphene Including All the Phonon Branches, J. Heat Transfer, vol. 140, p. 092404, 2018.Search in Google Scholar

12. O. Morandi, Wigner model for quantum transport in graphene, J. Phys. A: Math. Theor., vol. 44, p. 265301, 2011.Search in Google Scholar

13. L. Barletti, Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle, J. Math. Phys., vol. 55, no. 8, p. 083303, 2014.Search in Google Scholar

14. O. Muscato, A benchmark study of the Signed-particle Monte Carlo algorithm for the Wigner equation, Comm. in Appl. and Industrial Math., vol. 8, no. 1, pp. 237–250, 2017.10.1515/caim-2017-0012Search in Google Scholar

15. L. Luca and V. Romano, Quantum corrected hydrodynanic models for charge transport in graphene, Preprint, 2018.10.1016/j.aop.2019.03.018Search in Google Scholar

eISSN:
2038-0909
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics