Accès libre

Large Eddy Simulation of gravity currents with a high order DG method

, ,  et   
20 juil. 2017
À propos de cet article

Citez
Télécharger la couverture

1. W. Houf and R. Schefer. Analytical and experimental investigation of small scale unintended releases of hydrogen. International Journal of Hydrogen Energy, 33:1435-1444, 2008.10.1016/j.ijhydene.2007.11.031Search in Google Scholar

2. A.E. Gill. Atmosphere-Ocean Dynamics. Academic Press, 1982.Search in Google Scholar

3. J.F. Louis. A parametric model of vertical eddy fluxes in the atmosphere. Boundary Layer Meteorology, 17:197-202, 1979.10.1007/BF00117978Search in Google Scholar

4. L.C. Berselli, P.F. Fischer, T. Iliescu, and T.M. Özgökmen. Horizontal Large Eddy Simulation of Stratified Mixing in a Lock-Exchange System. Journal of Scientific Computing, 49:3-20, 2011.10.1007/s10915-011-9464-8Search in Google Scholar

5. T.M. Özgökmen, T. Iliescu, and P.F. Fischer. Large Eddy Simulation of stratified mixing in a three-dimensional Lock-exchange system. Ocean Modelling, 26:134-155, 2009.10.1016/j.ocemod.2008.09.006Search in Google Scholar

6. T.M. Özgökmen, T. Iliescu, P.F. Fischer, A. Srinivasan, and J. Duan. Large Eddy Simulation of stratified mixing in two-dimensional dam-break problem in a rectangular enclosed domain. Ocean Modelling, 16:106-140, 2007.10.1016/j.ocemod.2006.08.006Search in Google Scholar

7. A. Abbà, L. Bonaventura, M. Nini, and M. Restelli. Dynamic models for Large Eddy Simulation of compressible ows with a high order DG method. Computers & Fluids, 122:209-222, 2015.10.1016/j.compfluid.2015.08.021Search in Google Scholar

8. T.J.R. Hughes, A.A. Oberai, and L. Mazzei. Large eddy simulation of turbulent channel ows by the variational multiscale method. Physics of Fluids, 13:1784-1799, 2001.10.1063/1.1367868Search in Google Scholar

9. V. John and A. Kindl. Numerical studies of finite element Variational Multiscale Methods for turbulent ow simulations. Computer Methods in Applied Mechanics and Engineering, 199:841-852, 2010.10.1016/j.cma.2009.01.010Search in Google Scholar

10. V. K. Birman, J.E. Martin, and E. Meiburg. The non-Boussinesq Lock-exchange problem. Part 2. High-resolution simulations. Journal of Fluid Mechanics, 537:125-144, 2005.10.1017/S0022112005005033Search in Google Scholar

11. H. Schlichting. Boundary-layer theory.7th edition. McGraw-Hill, 1979.Search in Google Scholar

12. P. Sagaut. Large Eddy Simulation for Incompressible Flows: An Introduction. Springer Verlag, 2006.Search in Google Scholar

13. E. Garnier, N. Adams, and P. Sagaut. Large Eddy Simulation for Compressible Flows. Springer Verlag, 2009.10.1007/978-90-481-2819-8Search in Google Scholar

14. M. Germano, U. Piomelli, P. Moin, and W.H. Cabot. A Dynamic Subgrid-Scale Eddy Viscosity Model. Physics of Fluids, 3(7):1760-1765, 1991.10.1063/1.857955Search in Google Scholar

15. F.X. Giraldo and M. Restelli. A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modelling: equation sets and test cases. Journal of Computational Physics, 227:3849-3877, 2008.Search in Google Scholar

16. D. N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis of Discontinuous Galerkin methods for elliptic problems. SIAM Journal of Numerical Analysis, 39:1749-1779, 2002.10.1137/S0036142901384162Search in Google Scholar

17. F. Bassi and S. Rebay. High Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations. Journal of Computational Physics, 131:267-279, 1997.10.1006/jcph.1996.5572Search in Google Scholar

18. P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau. An a priori analysis of the Local Discontinuous Galerkin method for elliptic problems. SIAM Journal of Numerical Analysis, 38:1676-1706, 2000.10.1137/S0036142900371003Search in Google Scholar

19. B. Cockburn and C.W. Shu. The Local Discontinuous Galerkin Method for Time-Dependent Convection Diffusion Systems. SIAM Journal of Numerical Analysis, 35:2440-2463, 1998.10.1137/S0036142997316712Search in Google Scholar

20. J.J. Gottlieb and C.P.T. Groth. Assessment of Riemann Solvers for Unsteady One-Dimensional Inviscid Flows of Perfect Gases. Journal of Computational Physics, 78:437-458, 1988.10.1016/0021-9991(88)90059-9Search in Google Scholar

21. R. Cools. An Encyclopaedia of Cubature Formulas. Journal of Complexity, 19:445-453, 2003.10.1016/S0885-064X(03)00011-6Search in Google Scholar

22. S. S. Collis. Discontinuous Galerkin methods for turbulence simulation. In Proceed- ings of the 2002 Center for Turbulence Research Summer Program, pages 155-167, 2002.Search in Google Scholar

23. S. S. Collis and Y. Chang. The DG/VMS method for unified turbulence simulation. AIAA paper, 3124:24-27, 2002.10.2514/6.2002-3124Search in Google Scholar

24. F.van der Bos, J.J.W. van der Vegt, and B.J. Geurts. A multi-scale formulation for compressible turbulent ows suitable for general variational discretization techniques. Computer Methods in Applied Mechanics and Engineering, 196:2863-2875, 2007.10.1016/j.cma.2006.12.005Search in Google Scholar

25. FEMilaro, a finite element toolbox. https://bitbucket.org/mrestelli/femilaro/wiki/Home. Available under GNU GPL v3.Search in Google Scholar

26. L. Bonaventura. A semi-implicit, semi-Lagrangian scheme using the height coordinate for a nonhydrostatic and fully elastic model of atmospheric ows. Journal of Computational Physics, 158:186-213, 2000.10.1006/jcph.1999.6414Search in Google Scholar

27. G. Tumolo and L. Bonaventura. A semi-implicit, semi-Lagrangian, DG framework for adaptive numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, 141:2582-2601, 2015.10.1002/qj.2544Search in Google Scholar

28. K.B. Winters, P.N. Lombard, J.J. Riley, and E.A. D'Asaro. Available potential energy and mixing in density-stratified uids. Journal of Fluid Mechanics, 289:115-128, 1995.10.1017/S002211209500125XSearch in Google Scholar

29. Y. Tseng and J.H. Ferziger. Mixing and available potential energy in stratified ows. Physics of Fluids, 13:1281-1293, 2001.10.1063/1.1358307Search in Google Scholar

30. L.C. Berselli, M. Cerminara, and T. Iliescu. Disperse Two-Phase Flows, with Applications to Geophysical Problems. Pure and Applied Geophysics, 172:181-196, 2015.10.1007/s00024-014-0889-5Search in Google Scholar

31. M. Tugnoli, A. Abbà, L. Bonaventura, and M. Restelli. A locally p-adaptive approach for Large Eddy Simulation of compressible ows in a DG framework. MOX Report 37/2016, MOX - Politecnico di Milano, 2016.Search in Google Scholar

32. A. Abbà, C. Cercignani, and L. Valdettaro. Analysis of Subgrid Scale Models. Com- puter and Mathematics with Applications, 46:521-535, 2003.10.1016/S0898-1221(03)90014-9Search in Google Scholar

33. M. Germano, A. Abbà, R. Arina, and L. Bonaventura. On the extension of the eddy viscosity model to compressible ows. Physics of Fluids, 2014.10.1063/1.4871292Search in Google Scholar