On uniform exponential splitting for noninvertible evolution operators in Banach Spaces
, et
09 avr. 2016
À propos de cet article
Publié en ligne: 09 avr. 2016
Pages: 121 - 131
Reçu: 01 nov. 2015
Accepté: 15 déc. 2015
DOI: https://doi.org/10.1515/awutm-2015-0019
Mots clés
© 2015 Annals of West University of Timisoara - Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
The paper considers the general concept of uniform exponential splitting as a generalization of uniform exponential dichotomy property for evolution operators in Banach spaces.
Two characterizations in terms of integral inequalities of Datko-type respectively Lyapunov functions for uniform exponential splitting of a noninvertible evolution operator with respect to invariant projections families are obtained.