À propos de cet article

Citez

Ahmadi F., Rahimi F. (2011). The effect of different levels of nano silver on performance and retention of silver in edible tissues of broilers. World Appl. Sci., 12: 1-4.Search in Google Scholar

Ahmadi J., Mehrdad I., Mahdi C. (2009). Pathological study of intestine and liver in broiler chickens after treatment with different levels of silver nanoparticles. World Appl. Sci. J., 7: 28-32.Search in Google Scholar

Ahmadi F., Khah M.M., Javid S., Zarneshan A., Akradi L., Salehifar P. (2013). The effect of dietary silver nanoparticles on performance, immune organs, and lipid serum of broiler chickens during starter period. Inter. J. Biosci., 3: 95-100.Search in Google Scholar

Batzri S., Korn E.D. (1973). Single bilayer liposomes prepared without sonication. Biochim. Biophys. Acta, 298: 1015-1019.Search in Google Scholar

Braydich-Stolle L., Hussain S., Schlager J.J., Hofmann M.C. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci., 88: 412-419.Search in Google Scholar

Choi O., Hu Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol., 42: 4583-4588.Search in Google Scholar

Czaczyk K., Wojciechowska K. (2003). Creating bacterial biofilms - the essence of phenomena and mechanisms of interaction (in Polish). Biotechnologia, 3: 180-192.Search in Google Scholar

Egger S., Lehmann R.P., Height M.J., Loessner M.J., Schuppler M. (2009). Antimicrobial properties ofanovel silver-silica nanocomposite material. Appl. Environ. Microbiol., 75: 2973-2976.Search in Google Scholar

Euribrid B.V. (1994). Technical Information for Hybro Broilers, Euribrid Poultry Breeding Farm, Boxmeer (The Netherlands), pp. 22.Search in Google Scholar

Fondevila M., Herrer R., Casallas M.C., Abecia L., Ducha J.J. (2009). Silver nanoparticles as potential antimicrobial additive for weaned pigs. Anim. Feed Sci. Technol., 150: 259-269.Search in Google Scholar

Furowicz A., Boroń - Kaczmarska A., Ferlas M., Czarnomysy-Furowicz A., Po - bucewicz A. (2010). Bacterial biofilm as well as other microbial elements and mechanisms of survival in extreme conditions. Med. Weter., 66: 444-448.Search in Google Scholar

Gajbhiye M., Kesharwani J., Ingle A., Gade A., Rai M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine, 5: 382-386.Search in Google Scholar

Hussain S.M., Hess K.L., Gearhart J.M., Geiss K.T., Schlager J.J. (2005). In vitro toxicity of nanoparticles in BRL 3Arat liver cells. Toxicol. In Vitro, 19: 975-983.Search in Google Scholar

Hussain S.M., Javorina A.K., Schrand A.M., Duhart H.M., Ali S.F., Schlager J.J. (2006). The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol. Sci., 92: 456-463.Search in Google Scholar

Local Ethics Commission, Second (2014), University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Resolution No 30/2014, 27. 05.2004.Search in Google Scholar

Małaczewska J. (2010). The cytotoxicity of silver nanoparticles. Med. Weter., 66: 833-838.Search in Google Scholar

Małaczewska J. (2014). Effect of noble metal nanoparticles on the immune system of animals. Med. Weter., 70: 204-208.Search in Google Scholar

Nel A., Xia T., Madler L., Li N. (2006). Toxic potential of materials at the nanolevel. Science, 311: 622-627.Search in Google Scholar

Nutrient Requirements for Poultry: (2005). Fourth edition revised and enlarged. Collective work (A. Rutkowski - co-editor), PAN IFi ZZ Jabłonna Poland.Search in Google Scholar

Oliveira M.M., Ugarte D., Zanchet D., Zarbin A.J. (2005). Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J. Colloid Interf. Sci., 292: 2429-2435.Search in Google Scholar

Pineda L., Sawosz E., Lauridsen C., Engberg R.M., Elnif J., Hotowy A., Sa - wosz F., Chwalibóg A. (2012 a). Influence of in ovo injection and subsequent provision of silver nanoparticles on growth performance, microbial profile, and immune status of broiler chickens. Open Acc. Anim. Physiol., 4: 1-8.10.2147/OAAP.S35100Search in Google Scholar

Pineda L.M., Chwalibog A., Sawosz E., Lauridsen C., Engberg RM., Elnif J., Ho - towy A., Sawosz F., Ali A., Gao Y., Moghaddam H.S. (2012 b). Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch. Anim. Nutr., 66: 416-429.10.1080/1745039X.2012.71008122889095Search in Google Scholar

Prabhu S., Poulose E.K. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano. Letters, 2: 1-10.Search in Google Scholar

Pyatenko A., Yamaguchi M., Suzuki M. (2007). Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions. J. Phys. Chem. C, 111: 7910-7917.Search in Google Scholar

Savolainen K., Alenius H., Norppa H., Pylkkänen L., Tuomi T., Kasper G. (2010). Risk assessment of engineered nanomaterials and nanotechnologies -areview. Toxicology, 269: 92-104.Search in Google Scholar

Sawosz E., Binek M., Grodzik M., Zieliska M., Sysa P., Szmidt M., Niemiec T., Chwalibog A. (2007). Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch. Anim. Nutr., 61: 444-451.Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine