Accès libre

Mathematical Models for Dynamics of Molecular Processes in Living Biological Cells. A Single Particle Tracking Approach

À propos de cet article

Citez

[1] Barkai E., Metzler R., Klafter J., From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E 61 (2000), 132-138.10.1103/PhysRevE.61.13211046248Search in Google Scholar

[2] Barndorff-Nielsen O.E., Normal//inverse Gaussian Processes and the Modelling of Stock Returns, Research Report 300, Department of Theoretical Statistics, University of Aarhus, 1995.Search in Google Scholar

[3] Beran J., Statistics for Long-Memory Processes, Chapman and Hall, New York, 1994.Search in Google Scholar

[4] Brcich R.F., Iskander D.R., Zoubir A.M., The stability test for symmetric alpha-stable distributions, IEEE Trans. Signal Process. 53 (2005), 977-986.10.1109/TSP.2004.842192Search in Google Scholar

[5] Brockwell P.J., Davis R.A., Introduction to Time Series and Forecasting, Springer- Verlag, New York, 2002.10.1007/b97391Search in Google Scholar

[6] Burnecki K., FARIMA processes with application to biophysical data, J. Stat. Mech. 2012, P05015, 18 pp.10.1088/1742-5468/2012/05/P05015Open DOISearch in Google Scholar

[7] Burnecki K., Identification, Validation and Prediction of Fractional Dynamical Systems, Wroclaw University of Technology Press, Wrocław, 2012.Search in Google Scholar

[8] Burnecki K., Gajda J., Sikora G., Stability and lack of memory of the returns of the Hang Seng index, Physica A 390 (2011), 3136-3146.10.1016/j.physa.2011.04.025Search in Google Scholar

[9] Burnecki K., Kepten E., Garini Y., Sikora G., Weron A., Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach, Sci. Reports 5 (2015), 11306, 11 pp.10.1038/srep11306446394226065707Search in Google Scholar

[10] Burnecki K., Kepten E., Janczura J., Bronshtein I., Garini Y., Weron A., Universal algorithm for identification of fractional Brownian motion. A case of telomere subdiffusion, Biophys. J. 103 (2012), 1839-1847.10.1016/j.bpj.2012.09.040349172223199912Search in Google Scholar

[11] Burnecki K., Magdziarz M., Weron A., Identification and validation of fractional subdiffusion dynamics, in: Klafter J., Lim S.C., Metzler R. (eds.), Fractional Dynamics. Recent Advances, World Scientific, Singapore, 2012, pp. 331-351.10.1142/9789814340595_0014Search in Google Scholar

[12] Burnecki K., Muszkieta M., Sikora G., Weron A., Statistical modelling of subdiffusive dynamics in the cytoplasm of living cells: A FARIMA approach, EPL 98 (2012), 10004, 6 pp.10.1209/0295-5075/98/10004Open DOISearch in Google Scholar

[13] Burnecki K., Sikora G., Estimation of FARIMA parameters in the case of negative memory and stable noise, IEEE Trans. Signal Process. 61 (2013), 2825-2835.10.1109/TSP.2013.2253773Open DOISearch in Google Scholar

[14] Burnecki K., Sikora G.,Weron A., Fractional process as a unified model for subdiffusive dynamics in experimental data, Phys. Rev. E 86 (2012), 041912, 8 pp.10.1103/PhysRevE.86.041912Search in Google Scholar

[15] Burnecki K.,Weron A., Fractional Lévy stable motion can model subdiffusive dynamics, Phys. Rev. E 82 (2010), 021130, 8 pp.10.1103/PhysRevE.82.021130Search in Google Scholar

[16] Burnecki K.,Weron A., Algorithms for testing of fractional dynamics: a practical guide to ARFIMA modelling, J. Stat. Mech. 2014, P10036, 26 pp.10.1088/1742-5468/2014/10/P10036Open DOISearch in Google Scholar

[17] Burnecki K., Wyłomanska A., Beletskii A., Gonchar V., Chechkin A., Recognition of stable distribution with Lévy index a close to 2, Phys. Rev. E 85 (2012), 056711, 8 pp.10.1103/PhysRevE.85.056711Search in Google Scholar

[18] Caccia D.C., Percival D., Cannon M.J., Raymond G., Bassingthwaighte J.B., Analyzing exact fractal time series: evaluating dispersional analysis and rescaled range methods, Physica A 246 (1997), 609-632.10.1016/S0378-4371(97)00363-4Search in Google Scholar

[19] Cambanis S., Podgórski K.,Weron A., Chaotic behavior of infinitely divisible processes, Studia Math. 115 (1995), 109-127.Search in Google Scholar

[20] Chan T.F., Vese L.A., Active contours without edges, IEEE Trans. Image Process. 10 (2001), 266-277.10.1109/83.902291Search in Google Scholar

[21] Chang T., Sauer T., Schiff S.J., Tests for nonlinearity in short stationary time series, Chaos 5 (1995), 118-126.10.1063/1.166093Open DOISearch in Google Scholar

[22] Clark S., The dark side of the Sun, Nature 441 (2006), 402-404.10.1038/441402aSearch in Google Scholar

[23] Crato N., Rothman P., Fractional integration analysis of long-run behavior for US macroeconomic time series, Econom. Lett. 45 (1994), 287-291.10.1016/0165-1765(94)90025-6Search in Google Scholar

[24] Davies R.B., Harte D.S., Tests for Hurst effect, Biometrika 74 (1987), 95-101.10.1093/biomet/74.1.95Open DOISearch in Google Scholar

[25] Fleck L., Kowarzyk H., Steinhaus H., La distribution des leucocytes dans les préparations du sang, J. Suisse de Médecine 77 (1947), 1283.Search in Google Scholar

[26] Fouskitakis G.N., Fassois S.D., Pseudolinear estimation of fractionally integrated ARMA (ARFIMA) models with automotive application, IEEE Trans. Signal Process. 47 (1999), 3365-3380.10.1109/78.806080Open DOISearch in Google Scholar

[27] Fulinski A., Communication: How to generate and measure anomalous diffusion in simple systems, J. Chem. Phys. 138 (2013), 021101, 4 pp.Search in Google Scholar

[28] Gajda J., Sikora G., Wyłomanska A., Regime variance testing - a quantile approach, Acta Phys. Pol. B 44 (2013), 1015-1035.10.5506/APhysPolB.44.1015Open DOISearch in Google Scholar

[29] Gil-Alana L., A fractionally integrated model for the Spanish real GDP, Econ. Bull. 3 (2004), 1-6.Search in Google Scholar

[30] Golding I., Cox E.C., Physical nature of bacterial cytoplasm, Phys. Rev. Lett. 96 (2006), 098102, 4 pp.10.1103/PhysRevLett.96.098102Search in Google Scholar

[31] Granger C.W.J., Joyeux R., An introduction to long-memory time series models and fractional differencing, J. Time Ser. Anal. 1 (1980), 15-29.10.1111/j.1467-9892.1980.tb00297.xSearch in Google Scholar

[32] Guigas G., Kalla C., Weiss M., Probing the nanoscale viscoelasticity of intracellular fluids in living cells, Biophys. J. 93 (2007), 316-323.10.1529/biophysj.106.09926717416631Open DOISearch in Google Scholar

[33] Havlin S., Ben-Avraham D., Diffusion in disordered media, Adv. Phys. 36 (1987), 695-798.10.1080/00018738700101072Search in Google Scholar

[34] Hellmann M., Klafter J., Heermann D.W., Weiss M., Challenges in determining anomalous diffusion in crowded fluids, J. Phys.: Condens. Matter 23 (2011), 234113, 7 pp.Search in Google Scholar

[35] Hoffmann-Jørgensen J., Stable densities, Theory Probab. Appl. 38 (1993), 350-355.10.1137/1138031Search in Google Scholar

[36] Höfling F., Franosch T., Anomalous transport in the crowded world of biological cells, Rep. Prog. Phys. 76 (2013), 046602, 50 pp.23481518Search in Google Scholar

[37] Hosking J.R.M., Fractional differencing, Biometrika 68 (1981), 165-176.10.1093/biomet/68.1.165Search in Google Scholar

[38] Janicki A., Weron A., Simulation and Chaotic Behavior of -stable Stochastic Processes, Marcel Dekker Inc., New York, 1994.Search in Google Scholar

[39] Kehr K.W., Kutner R., Random walk on a random walk, Physica A 110 (1982), 535-549.10.1016/0378-4371(82)90067-XSearch in Google Scholar

[40] Kokoszka P.S., Prediction of infinite variance fractional ARIMA, Probab. Math. Statist. 16 (1996), 65-83.Search in Google Scholar

[41] Kokoszka P.S., Taqqu M.S., Fractional ARIMA with stable innovations, Stochastic Process. Appl. 60 (1995), 19-47.10.1016/0304-4149(95)00034-8Search in Google Scholar

[42] Kokoszka P.S., Taqqu M.S., Parameter estimation for infinite variance fractional ARIMA, Ann. Statist. 24 (1996), 1880-1913.10.1214/aos/1069362302Open DOISearch in Google Scholar

[43] Kolmogorov A.N., Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum, C. R. (Doklady) Acad. Sci. URSS (N.S.) 26 (1940), 115-118.Search in Google Scholar

[44] Kou S.C., Xie X.S., Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule, Phys. Rev. Lett. 93 (2004), 180603, 4 pp.15525146Search in Google Scholar

[45] Kowarzyk H., Steinhaus H., Szymaniec S., Arrangement of chromosomes in human cells. I. Associations in metaphase figures, Bull. Acad. Polon. Sci., Ser. Sci. Biol. 13 (1965), 321-326.Search in Google Scholar

[46] Kowarzyk H., Steinhaus H., Szymaniec S., Arrangement of chromosomes in human cells. 3. Distribution of centromeres and orientation of chromosomes in the metaphase, Bull. Acad. Polon. Sci., Ser. Sci. Biol. 14 (1966), 541-544.Search in Google Scholar

[47] Lagarias J.C., Reeds J.A., Wright M.H., Wright P.E., Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optim. 9 (1998), 112-147.10.1137/S1052623496303470Search in Google Scholar

[48] Lanoiselée Y., Grebenkov D.S., Revealing nonergodic dynamics in living cells from a single particle trajectory, Phys. Rev. E 93 (2016), 052146, 17 pp.10.1103/PhysRevE.93.05214627300868Search in Google Scholar

[49] Lasota A., Mackey M.C., Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, Springer-Verlag, New York, 1994.10.1007/978-1-4612-4286-4Search in Google Scholar

[50] Lasota A., Mackey M.C.,Wazewska-Czyzewska M., Minimizing therapeutically induced anemia, J. Math. Biol. 13 (1981/82), 149-158.10.1007/BF002752107328364Open DOISearch in Google Scholar

[51] Lim S.C., Muniandy S.V., Self-similar Gaussian processes for modeling anomalous diffusion, Phys. Rev. E 66 (2002), 021114, 14 pp.10.1103/PhysRevE.66.02111412241157Search in Google Scholar

[52] Ljung G.M., Box G.E.P., On a measure of lack of fit in time series models, Biometrika 65 (1978), 297-303.10.1093/biomet/65.2.297Open DOISearch in Google Scholar

[53] Loch H., Janczura A., Weron A., Ergodicity testing using an analytical formula for a dynamical functional of alpha-stable autoregressive fractionally integrated moving average processes, Phys. Rev. E 93 (2016), 043317, 10 pp.10.1103/PhysRevE.93.04331727176438Search in Google Scholar

[54] Loch-Olszewska H., Sikora G., Janczura J., Weron A., Identifying ergodicity breaking for fractional anomalous diffusion: Criteria for minimal trajectory length, Phys. Rev. E 94 (2016), 052136, 8 pp.Search in Google Scholar

[55] Magdziarz M., Weron A., Fractional Langevin equation with -stable noise. A link to fractional ARIMA time series, Studia Math. 181 (2007), 47-60.10.4064/sm181-1-4Search in Google Scholar

[56] Magdziarz M., Weron A., Anomalous diffusion: Testing ergodicity breaking in experimental data, Phys. Rev. E 84 (2011), 051138, 5 pp.Search in Google Scholar

[57] Magdziarz M., Weron A., Burnecki K., Klafter J., Fractional Brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics, Phys. Rev. Lett. 103 (2009), 180602, 4 pp.Search in Google Scholar

[58] Mandelbrot B.B., Wallis J.R., Noah, Joseph, and operational hydrology, Water Resour. Res. 4 (1968), 909-918.10.1029/WR004i005p00909Open DOISearch in Google Scholar

[59] Mann M.E., Bradley R.S., Hughes M.K., Global-scale temperature patterns and climate forcing over the past six centuries, Nature 392 (1998), 779-787.10.1038/33859Search in Google Scholar

[60] Meroz Y., Sokolov I.M., Klafter J., Test for determining a subdiffusive model in ergodic systems from single trajectories, Phys. Rev. Lett. 110 (2013), 090601, 4 pp.10.1103/PhysRevLett.110.090601Search in Google Scholar

[61] Metzler R., Barkai E., Klafter J., Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach, Phys. Rev. Lett. 82 (1999), 3563-3567.10.1103/PhysRevLett.82.3563Open DOISearch in Google Scholar

[62] Metzler R., Klafter J., The random walk’s guide to anomalous difusion: a fractional dynamics approach, Phys. Rep. 339 (2000), 1-77.10.1016/S0370-1573(00)00070-3Search in Google Scholar

[63] Nolan J.P., Numerical calculation of stable densities and distribution functions, Commun. Statist.-Stochastic Models 13 (1997), 759-774.10.1080/15326349708807450Search in Google Scholar

[64] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Amsterdam, 1993.Search in Google Scholar

[65] Saxton M.J., Anomalous diffusion due to obstacles: a Monte Carlo study, Biophys. J. 66 (1994), 394-401.10.1016/S0006-3495(94)80789-1Open DOISearch in Google Scholar

[66] Saxton M.J., Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study, Biophys. J. 81 (2001), 2226-2240.10.1016/S0006-3495(01)75870-511566793Open DOISearch in Google Scholar

[67] Saxton M.J., Wanted: a positive control for anomalous subdiffusion, Biophys. J. 103 (2012), 2411-2422.10.1016/j.bpj.2012.10.038352584223260043Search in Google Scholar

[68] Schneider W.R., Stable distributions: Fox functions representation and generalization, in: Albeverio S., Casati G., Merlini D. (eds.), Stochastic Processes in Classical and Quantum Systems, Springer, Berlin, 1986, pp. 497-511.10.1007/3540171665_92Search in Google Scholar

[69] Slezak J., Drobczynski D., Weron K., Masajada J., Moving average process underlying the holographic-optical-tweezers experiments, Appl. Opt. 53 (2014), B254-B258.10.1364/AO.53.00B25424787213Search in Google Scholar

[70] Sokolov I.M., Models of anomalous diffusion in crowded environments, Soft Matter 8 (2012), 9043-9052.10.1039/c2sm25701gSearch in Google Scholar

[71] Stanislavsky A., Memory effects and macroscopic manifestation of randomness, Phys. Rev. E 61 (2000), 4752-4759.10.1103/PhysRevE.61.475211031515Search in Google Scholar

[72] Stanislavsky A.A., Burnecki K., Magdziarz M., Weron A., Weron K., FARIMA modeling of solar flare activity from empirical time series of soft X-ray solar emission, Astrophys. J. 693 (2009), 1877-1882.10.1088/0004-637X/693/2/1877Search in Google Scholar

[73] Stanislavsky A., Weron K., Weron A., Anomalous diffusion with transient subordinators: a link to compound relaxation laws, J. Chem. Phys. 140 (2014), 054113, 7 pp.Search in Google Scholar

[74] Stoev S., Taqqu M.S., Simulation methods for linear fractional stable motion and FARIMA using the fast Fourier transform, Fractals 12 (2004), 95-121.10.1142/S0218348X04002379Open DOISearch in Google Scholar

[75] Weron A., Burnecki K., Mercik S., Weron K., Complete description of all self-similar models driven by Lévy stable noise, Phys. Rev. E 71 (2005), 016113, 10 pp.10.1103/PhysRevE.71.01611315697664Search in Google Scholar

[76] Weron A., Magdziarz M., Anomalous diffusion and semimartingales, EPL 86 (2009), 60010, 6 pp.10.1209/0295-5075/86/60010Search in Google Scholar

[77] Weron A.,Weron R., Computer simulation of Lévy -stable variables and processes, in: Garbaczewski P., Wolf M., Weron A. (eds.), Chaos - the Interplay Between Stochastic and Deterministic Behaviour, Springer, Berlin, 1995, pp. 379-392.10.1007/3-540-60188-0_67Search in Google Scholar

[78] Weron R., Levy-stable distributions revisited: tail index > 2 does not exclude the Levystable regime, Int. J. Mod. Phys. C 12 (2001), 209-223.10.1142/S0129183101001614Open DOISearch in Google Scholar

[79] Weron R., Computationally intensive value at risk calculations, in: Gentle J.E., Härdle W., Mori Y. (eds.), Handbook of Computational Statistics. Concepts and Methods, Springer, Berlin, 2004, pp. 911-950.Search in Google Scholar

[80] Wigner E.P., The unreasonable effectiveness of mathematics in the natural sciences, Comm. Pure Appl. Math. 13 (1960), 1-14.10.1002/cpa.3160130102Search in Google Scholar

eISSN:
2391-4238
ISSN:
0860-2107
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Mathematics, General Mathematics