Accès libre

Numerical Solution of Time Fractional Schrödinger Equation by Using Quadratic B-Spline Finite Elements

À propos de cet article

Citez

[1] Dehghan M., Jalil M., Abbas S., Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Meth. Part. D. E. 26 (2010), 448-479.10.1002/num.20460Search in Google Scholar

[2] Ertürk V.S., Momani S., Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math. 215 (2008), 142-151.10.1016/j.cam.2007.03.029Search in Google Scholar

[3] Esen A., Tasbozan O., An approach to time fractional gas dynamics equation: Quadratic B-spline Galerkin method, Appl. Math. Comput. 261 (2015), 330-336.Search in Google Scholar

[4] Esen A., Tasbozan O., Cubic B-spline collocation method for solving time fractional gas dynamics equation, Tbilisi Math. J. 8 (2015), 221-231.Search in Google Scholar

[5] Esen A., Tasbozan O., Numerical solution of time fractional Burgers equation, Acta Univ. Sapientiae Math. 7 (2015), 167-185.Search in Google Scholar

[6] Esen A., Tasbozan O., Numerical solution of time fractional Burgers equation by cubic B-spline finite elements, Mediterr. J. Math. 13 (20016), 1325-1337.10.1007/s00009-015-0555-xSearch in Google Scholar

[7] Esen A., Tasbozan O., Ucar Y., Yagmurlu N.M., A B-spline collocation method for solving fractional diffusion and fractional diffusion-wave equations, Tbilisi Math. J. 8 (2015), 181-193.Search in Google Scholar

[8] Esen A., Ucar Y., Yagmurlu N.M., Tasbozan O., A Galerkin finite element method to solve fractional diffusion and fractional diffusion-wave equations, Math. Model. Anal. 18 (2013), 260-273.10.3846/13926292.2013.783884Search in Google Scholar

[9] Esen A., Yagmurlu N.M., Tasbozan O., Approximate analytical solution to timefractional damped Burger and Cahn-Allen equations, Appl. Math. Inf. Sci. 7 (2013), 1951-1956.10.12785/amis/070533Search in Google Scholar

[10] Jafari H., Momani S., Solving fractional diffusion and wave equations by modified homotopy perturbation method, Phys. Lett. A 370 (2007), 388-396.10.1016/j.physleta.2007.05.118Search in Google Scholar

[11] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.Search in Google Scholar

[12] Logan D.L., A first course in the finite element method, Fourth edition, Thomson, Toronto 2007.Search in Google Scholar

[13] Machado J.A.T., Silva M.F., Barbosa R.S., Jesus I.S., Reis C.M., Marcos M.G., Galhano A.F., Some applications of fractional calculus in engineering, Math. Probl. Eng. 2010, Article ID 639801, 34 pp., http://dx.doi.org/10.1155/2010/639801.10.1155/2010/639801Search in Google Scholar

[14] Miller K.S., Ross B., An introduction to the fractional calculus and fractional differantial equations, John Wiley, New York, 1993.Search in Google Scholar

[15] Mohebbi A., Abbaszadeh M., Dehghan M., The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics, Eng. Anal. Bound. Elem. 37 (2013), 475-485.10.1016/j.enganabound.2012.12.002Search in Google Scholar

[16] Momani S., Odibat Z., Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Phys. Lett. A 355 (2006), 271-279.10.1016/j.physleta.2006.02.048Search in Google Scholar

[17] Momani S., Odibat Z., Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Soliton Fractals 31 (2007), 1248-1255. 10.1016/j.chaos.2005.10.068Search in Google Scholar

[18] Odibat Z., Momani S., A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett. 21 (2008), 194-199.10.1016/j.aml.2007.02.022Search in Google Scholar

[19] Oldham K.B., Spainer J., The fractional calculus, Academic Press, New York, 1974.Search in Google Scholar

[20] Otteson N., Pettorson H., Introduction to the finite element method, Prentice Hall, London, 1992.Search in Google Scholar

[21] Podlubny I., Fractional differential equations, Academic Press, San Diego, 1999.Search in Google Scholar

[22] Prenter P.M., Splines and variasyonel methods, John Wiley, New York, 1975. Search in Google Scholar

[23] Shawagfeh N.T., Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput. 131 (2002), 517-529.Search in Google Scholar

[24] Tasbozan O., Esen A., Yagmurlu N.M., Ucar Y., A numerical solution to fractional diffusion equation for force-free case, Abstr. Appl. Anal. 2013, Article ID 187383, 6 pp., http://dx.doi.org/10.1155/2013/187383.10.1155/2013/187383Search in Google Scholar

[25] Yuste S.B., Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys. 216 (2006), 264-274.10.1016/j.jcp.2005.12.006Search in Google Scholar

[26] Yuste S.B., Acedo L., An explicit finite difference method and a new von Neumanntype stability analysis for fractional diffusion equations, SIAM J. Numer. Anal. 42 (2005), 1862-1874.10.1137/030602666Search in Google Scholar

[27] Wang Q., Homotopy perturbation method for fractional KdV-Burgers equation, Chaos Soliton Fractals 35 (2008), 843-850.10.1016/j.chaos.2006.05.074Search in Google Scholar

[28] Wei L., He Y., Zhang X., Wang S., Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation, Finite Elem. Anal. Des. 59 (2012), 28-34.10.1016/j.finel.2012.03.008Search in Google Scholar

[29] Wei L., Zhang X., Kumar S., Yildirim A., A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrödinger system, Comput. Math. Appl. 64 (2012), 2603-2615.10.1016/j.camwa.2012.07.004Search in Google Scholar

[30] Wua G.C., Baleanu D., Variational iteration method for the Burgers flow with fractional derivatives-New Lagrange multipliers, Appl. Math. Model. 37 (2013), 6183-6190.10.1016/j.apm.2012.12.018Search in Google Scholar

eISSN:
0860-2107
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Mathematics, General Mathematics