À propos de cet article

Citez

1. http://www.outsideonline.com/1912971/venom-not-just-poisonSearch in Google Scholar

2. http://www.wondersandmarvels.com/2011/11/the-uses-of-snakevenom-in-antiquity.htmlSearch in Google Scholar

3. Kang TS, Georgieva D, Kini RM et al. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J. 2011;278(23):4544-4476.10.1111/j.1742-4658.2011.08115.xSearch in Google Scholar

4. Mitchell SW, Reichert ET. Researches upon the venoms of poisonous serpents.Smithsonian Contribution to Knowledge Smithsonian Institute, Washington D.C. 1886;pp.89-95.Search in Google Scholar

5. Markland Jr. FS, Swenson S. Snake venom metalloproteinases. Toxicon. 2013;62:3-18.10.1016/j.toxicon.2012.09.004Search in Google Scholar

6. Ohsaka A. Fractionation of Habu snake venom by chromatography on cm-cellulose with special reference to biological activities. Jpn J Med Sci Biol. 1960;13:199-205.10.7883/yoken1952.13.199Search in Google Scholar

7. Ohsaka A, Ikezawa H, Kondo H, Kondo S. Two hemorrhagic principles derived from Habu snake venom and their difference in zone electrophoretical mobility. Jpn J Med Sci Biol. 1960;13:73-76.10.7883/yoken1952.13.73Search in Google Scholar

8. Okonogi T, Hoshi S, Honma M, et al. Studies on the habu snake venom. 3-2. A comparative study of histopathological changes caused by crude venom, purified habu-proteinase and other proteinases. Jpn J Microbiol. 1960;4:189-192.10.1111/j.1348-0421.1960.tb00167.xSearch in Google Scholar

9. Maeno H, Mitsuhashi S, Sato R. Studies on Habu snake venom. 2c. Studies on Hβ-proteinase of Habu venom.Jpn J Microbiol. 1960;4:173-180.10.1111/j.1348-0421.1960.tb00165.xSearch in Google Scholar

10. Bjarnason JB, Tu AT. Hemorrhagic toxins from western diamondback rattlesnake (Crotalus atrox) venom: isolation and characterization of five toxins and the role of zinc in hemorrhagic toxin e. Biochemistry. 1978;17(16):3395-3404.10.1021/bi00609a033Search in Google Scholar

11. Takahashi T, Ohsaka A. Purification and some properties of two hemorrhagic principles (HR2a and HR2b) in the venom of Trimeresurus flavoviridis; complete separation of the principles from proteolytic activity. Biochim Biophys Acta. 1970;207(1):65-75.10.1016/0005-2795(70)90137-6Search in Google Scholar

12. Takeda S, Takeya H, Iwanaga S. Snake venom metalloproteinase: structure, function and relevance to the mammalian ADAM/ADAMTS family proteins. Biochim Biophys Acta. 2012;1824(1):164-176.10.1016/j.bbapap.2011.04.00921530690Search in Google Scholar

13. Fox JW, Serrano SMT. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J. 2008;275:3016-3030.10.1111/j.1742-4658.2008.06466.x18479462Search in Google Scholar

14. Shannon JD, Baramovat EN, Bjarnason JB, Fox JW. Amino acid sequence of a Crotalus atrox venom metalloproteinase which cleaves type IV collagen and gelatin. J Biol Chem. 1989;264(20):11575-11583.10.1016/S0021-9258(18)80102-8Search in Google Scholar

15. Bjarnason JB, Fox JW. Snake venom metalloendopeptidases: Reprolysins. Methods Enzymol. 1995;248:345-368.10.1016/0076-6879(95)48023-4Search in Google Scholar

16. Bjarnason JB, Fox JW. Hemorrhagic metalloproteinases from snake venoms. Pharmacol Ther. 1994;62(3):325-372.10.1016/0163-7258(94)90049-3Search in Google Scholar

17. Hite LA, Shannon JD, Bjarnason JB, Fox JW. Sequence of cDNA clone encoding the zinc metalloproteinase hemorrhagic toxin e from Crotalus atrox: Evidence for signal, zymogen, and disintegrin-like structures. Biochemistry. 1992;31:6203-6211.10.1021/bi00142a005Search in Google Scholar

18. Shimokawa K, Jia LG, Wang XM, Fox JW. Expression, activation, and processing of the recombinant snake venom metalloproteinase, proatrolysin E. Arch BiochemBiophys. 1996;335(2):283-294.10.1006/abbi.1996.0509Search in Google Scholar

19. Fox JW, Serano SMT. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases.Toxicon. 2005; 45: 969-985;10.1016/j.toxicon.2005.02.012Search in Google Scholar

20. White JM. ADAMs: modulators of cell-cell and cell-matrix interactions. CurrOpin Cell Biol. 2003;15(5):598-606.Search in Google Scholar

21. Mackessy S. Handbook of Venom and Toxins of Reptiles. CRC Press, Taylor & Francis Group, Boca Raton, Florida, USA; 2010;P.12-16,P. 95-132.Search in Google Scholar

22. Pinto A FM, Terra MS, Guimares JA, Fox JW. Mapping von Willebrand factor A domain binding sites on a snake venom metalloproteinase cysteine-rich domain. Arch Biochem Biophys. 2007;457(1):41-46.10.1016/j.abb.2006.10.010Search in Google Scholar

23. Moura-da-Silva AM, Della-Casa MS, David AS, Assakura MT, Butera D, Lebrun I, Shannon JD, Serrano SM, Fox JW. Evidence for heterogeneous forms of the snake venom metalloproteinase jararhagin: A factor contributing to snake venom variability. Arch BiochemBiophys. 2003;409(2):395-401.10.1016/S0003-9861(02)00598-2Search in Google Scholar

24. Calvete JJ, Juarez P, Sanz L. Snake venomics. Strategy and applications.J Mass Spectrom. 2007;42:1405-1414.10.1002/jms.124217621391Search in Google Scholar

25. Ompraba C, Chapeaurouge A, Kini RM et al. Identification of a novel family of snake venom proteins veficolins from Cerberus rynchops using a venom gland transcriptomics and proteomics approach. J Proteome Res. 2010;9(4):1882-1893.10.1021/pr901044x20158271Search in Google Scholar

26. Weldon CL, Mackessy SP. Biological and proteomic analysis of venom from the Puerto Rican Racer (Alsophis Portoricensis: Dipsadidae). Toxicon. 2010;55:558-569.10.1016/j.toxicon.2009.10.010Search in Google Scholar

27. Georgieva D, Seifert J, Betzel C et al. Pseudechis australis venomics: adaptation for a defense against microbial pathogens and recruitment of body transferrin. 2011;10(5):2440-2464.Search in Google Scholar

28. Petras D, Sanz L, Calvette JJ et al. Snake venomics of African spitting cobras: toxin composition and assessment of congeneric cross-reactivity of the pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. J. ProteomeRes. 2011;10:1266-1280.Search in Google Scholar

29. Shimokawa K, Shannon JD, Jia LG, Fox JW. Sequence and biological activity of Catrocollastatin-C: a disintegrin-like/cysteine-rich twodomain protein from Crotalus atrox venom. Arch BiochemBiophys. 1997;343(1):35-43.10.1006/abbi.1997.0133Search in Google Scholar

30. Kress LF, Paroski EA. Enzymatic inactivation of human serum proteinase inhibitors by snake venom proteinase. BiochemBiophys Res Commun. 1978;83:649-656.10.1016/0006-291X(78)91039-2Search in Google Scholar

31. Zhang D, Fox JW, Meyer EF et al. Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase atrolysin C (form d). ProcNatlAcadSci USA 1994;91(18):8447-8451.10.1073/pnas.91.18.8447Search in Google Scholar

32. Gutierrez JM, Romero M, Diaz C, Borkow G, Ovadia M. Isolation and characterization of a metalloproteinase with weak hemorrhagic activity from the venom of the snake Bothrops asper (terciopelo). Toxicon. 1995;33:19-29.10.1016/0041-0101(94)00138-XSearch in Google Scholar

33. Rucavado A, Lomonte B, Ovadia M, Gutierrez JM. Local tissue damage induced by BaP1, a metalloproteinase isolated from Bothrops asper (terciopelo) snake venom. ExpMolPathol. 1995;63:186-199.10.1006/exmp.1995.10429062552Search in Google Scholar

34. Takeya H, Arakawa M, Miyata T, Iwanaga S, Omori-Satoh T. Primary structure of H2-proteinase, a non-hemorrhagic metalloproteinase, isolated from the venom of the habu snake, Trimeresurus flavoviridis. J Biochem. 1989;106:151-157.10.1093/oxfordjournals.jbchem.a1228052777746Search in Google Scholar

35. Wu WB, Chang SC, Liau MY, Huang TF. Purification, molecular cloning and mechanism of action of graminelysin I, a snake-venom-derived metalloproteinase that induces apoptosis of human endothelial cells. Biochem J. 2001;357:719-728.10.1042/bj3570719Search in Google Scholar

36. Bernardes CP, Soares AM, de Oliveira F et al. Isolation and structural characterization of a new fibrin(ogen)olytic metalloproteinase from Bothrops moojeni snake venom. Toxicon. 2008;51:574-584.10.1016/j.toxicon.2007.11.01718187176Search in Google Scholar

37. Cintra AC, De Toni LG, Sampaio SV et al. Batroxase, a new metalloproteinase from B. atrox snake venom with strong fibrinolytic activity. Toxicon. 2012;60(1):70-82.10.1016/j.toxicon.2012.03.01822483847Search in Google Scholar

38. de Toni LGB, Menaldo DL, Sampaio SV. Inflammatory mediators involved in the paw edema and hyperalgesia induced by Batroxase, a metalloproteinase isolated from Bothrops atrox snake venom. Int Immunopharmacol. 2015;28(1):199-207.10.1016/j.intimp.2015.06.001Search in Google Scholar

39. Achê DC, Gomes MS, Rodrigues VdeM et al. Biochemical properties of a new PI SVMP from Bothrops pauloensis: inhibition of cell adhesion and angiogenesis. Int J Biol Macromol. 2015;72:445-453.10.1016/j.ijbiomac.2014.08.050Search in Google Scholar

40. Chen RQ, Jin Y, Xiong YL et al. A new protein structure of P-II class snake venom metalloproteinase: it comprise metalloproteinase and disintegrin domains. Biochem Biophys Res Commun. 2003;310:182-187.10.1016/j.bbrc.2003.09.009Search in Google Scholar

41. Nikai T, Fox JW, Sugihara H et al. Primary structure and functional characterization of bilitoxin-1, a novel dimeric P-II snake venom metalloproteinase from Agkistrodon bilineatus venom. Arch Biochem Biophys. 2000;378:6-15.10.1006/abbi.2000.1795Search in Google Scholar

42. Jeon OH, Kim DS. Molecular cloning and functional characterization of a snake venom metalloproteinase.Eur J Biochem. 1999;263:526-533.10.1046/j.1432-1327.1999.00525.xSearch in Google Scholar

43. Camacho E, Gutierrez JM, Rucavado A et al. Understanding structural and functional aspects of PII snake venom metalloproteinase: Characterization of BlatH1, a hemorrhagic dimeric enzyme from the venom of Bothriechis lateralis. Biochimie. 2014;101:145-155.10.1016/j.biochi.2014.01.008Search in Google Scholar

44. Oyama E, Takahashi H. Purification and characterization of two high molecular mass snake venom metalloproteinase (P-III SVMPs), named SV-PAD-2 and HR-Ele-1, from the venom of Protobothrops elegansi (Sakishima-habu). Toxicon. 2015;103:30-38.10.1016/j.toxicon.2015.06.010Search in Google Scholar

45. Leonardi A, Sajevic T, Križaj I et al. Structural and biochemical characterization of VaF1, a P-IIIafibrinogenolytic metalloproteinase from Vipera ammodytes ammodytes venom. Biochimie. 2015;109:78-87.10.1016/j.biochi.2014.12.013Search in Google Scholar

46. Shioi N, Nishijima A, Terada S. Flavorase, a novel non-hemorrhagic metalloproteinase in Protobothrops flavoviridis venom, is a target molecule of small serum protein-3. J Biochem. 2015;158(1):37-48.10.1093/jb/mvv017Search in Google Scholar

47. Paine MJ, Desmond HP, Theakston RD, Crampton JM. Purification, cloning and molecular characterization of high molecular weight hemorrhagic metalloproteinase, jarahagin from Bothrops jararaca venom. Insights into the disintegrin gene family. J Biol Chem. 1992;267:22869-22876.10.1016/S0021-9258(18)50027-2Search in Google Scholar

48. Sartim MA, Costa TR, Sampaio SV et al. Moojenactivase, a novel procoagulant PIIIdmetalloprotease isolated from Bothrops moojeni snake venom, activates coagulation factors II and X and induces tissue factor up-regulation in leukocytes. Arch Toxicol. 2015;DOI10.1007/s00204-015-1533-6. (terciopelo) snake venom. ExpMolPathol. 1995;63:186-199.Search in Google Scholar

eISSN:
2247-6113
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, other