À propos de cet article

Citez

Akram, M. and Dudek, W.A. (2011). Interval valued fuzzy graphs, Computers Mathematics with Applications 61(2): 289–299.10.1016/j.camwa.2010.11.004Search in Google Scholar

Alcalde, C., Burusco, A., Fuentes-González, R. and Zubia, I. (2011). The use of linguistic variables and fuzzy propositions in the L-fuzzy concept theory, Computers and Mathematics with Applications 62(8): 3111–3122.10.1016/j.camwa.2011.08.024Search in Google Scholar

Alcalde, C., Burusco, A. and Fuentes-González, R. (2012a). Analysis of certain L-fuzzy relational equations and the study of its solutions by means of the L-fuzzy concept theory, International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems 20(1): 21-40.10.1142/S021848851250002XSearch in Google Scholar

Alcalde, C., Burusco, A. and Fuentes-González, R. (2012b). Composition of L-fuzzy contexts, Proceedings of the 10th ICFCA 2012, Leuven, Belgium, pp. 1-14 .Search in Google Scholar

Alcalde, C., Burusco, A. and Fuentes-González, R. (2012c). The study of fuzzy context sequences, International Journal of Computational Intelligence Systems 6(3): 518-529.10.1080/18756891.2013.781337Search in Google Scholar

Alcalde, C., Burusco, A. and Fuentes-González, R. (2015). The use of two relations in L-fuzzy contexts, Information Sciences 301: 1-14.10.1016/j.ins.2014.12.057Search in Google Scholar

Alqadah, F. and Bhatnagar, R. (2012). Similarity measures in formal concept analysis, Annals of Mathematics and Artificial Intelligence 61(3): 245-256.10.1007/s10472-011-9257-7Search in Google Scholar

Amin, I.I., Kassim, S.K., Hassanien, A.E. and Hefny, H.A. (2012). Formal concept analysis for mining hypermethylated genes in breast cancer tumor subtypes, Proceedings of 12th ISDA, 2012, Kochi, India, pp. 764-769.Search in Google Scholar

Annapurna, J. and Aswani Kumar, Ch. (2013). Exploring attribute with domain knowledge in formal concept analysis, Journal of Computing and Information Technology 21(2): 109-123.10.2498/cit.1002114Search in Google Scholar

Antoni, L., Krajci, S., Kridlo, O., Macek, B. and Piskova, L. (2014). On heterogeneous formal contexts, Fuzzy Sets and Systems 234: 22-33.10.1016/j.fss.2013.04.008Search in Google Scholar

Aswani Kumar, Ch. (2011a). Reducing data dimensionality using random projections and fuzzy K-means clustering, International Journal of Intelligent Computing and Cybernetics 4(3): 353-365.10.1108/17563781111160020Search in Google Scholar

Aswani Kumar, Ch. (2011b). Knowledge discovery in data using formal concept analysis and random projections, International Journal of Applied Mathematics and Computer Science 21(4): 745-756, DOI: 10.2478/v10006-011-0059-1.10.2478/v10006-011-0059-1Search in Google Scholar

Aswani Kumar, Ch. (2012). Fuzzy clustering-based formal concept analysis for association rules mining, Applied Artificial Intelligence 26(3): 274-301.10.1080/08839514.2012.648457Search in Google Scholar

Aswani Kumar, Ch. (2013). Designing role-based access control using formal concept analysis, Security and Communication Networks 6(3): 373-383.10.1002/sec.589Search in Google Scholar

Aswani Kumar, Ch., Radvansky, M., Fuentes-Gonzlez, R. and Annapurna, J. (2012). Analysis of a vector space model, latent semantic indexing and formal concept analysis for information retrieval, Cybernetics and Information Technologies 12(1): 34-48.10.2478/cait-2012-0003Search in Google Scholar

Aswani Kumar, Ch., Dias, S.M. and Vieira, N.J. (2015a). Knowledge reduction in formal contexts using non-negative matrix factorization, Mathematics and Computers in Simulation 109: 46-63.10.1016/j.matcom.2014.08.004Search in Google Scholar

Aswani Kumar, Ch., Ishwaryaa, M.S. and Loo, C.K. (2015b). Formal concept analysis approach to cognitive functionalities of bidirectional associative memory, Biologically Inspired Cognitive Architectures 22: 20-33, DOI:10.1016/j.bica.2015.04.003.10.1016/j.bica.2015.04.003Search in Google Scholar

Aswani Kumar, Ch. and Singh, P.K. (2014). Knowledge representation using formal concept analysis: A study on concept generation, in B.K. Tripathy and D.P. Acharjya (Eds.), Global Trends in Knowledge Representation and Computational Intelligence, IGI Global Publishers, Hershey, PA, pp. 306-336.10.4018/978-1-4666-4936-1.ch011Search in Google Scholar

Aswani Kumar, Ch. and Srinivas, S. (2010). Concept lattice reduction using fuzzy K-means clustering, Expert Systems with Application 37(3): 2696-2704.10.1016/j.eswa.2009.09.026Search in Google Scholar

Atif, J., Hudelot, C. and Bloch, I. (2014). Explanatory reasoning for image understanding using formal concept analysis and description logics, IEEE Transactions on Systems, Man, and Cybernetics A 44(4): 552-570.10.1109/TSMC.2013.2280440Search in Google Scholar

Aufaure, M.A. and Grand, B.L. (2013). Advances in FCA-based applications for social networks analysis, International Journal of Conceptual Structures and Smart Applications 1(1): 73-89.10.4018/ijcssa.2013010104Search in Google Scholar

Babin, M.A. and Kuznetsov, S.O. (2012). Approximating concept stability, in F. Domenach et al. (Eds.), Proceedings of the 10th International Conference, ICFCA 2012, Lecture Notes in Computer Science, Vol. 7278, Springer, Berlin/Heidelberg, pp. 7-15.10.1007/978-3-642-29892-9_7Search in Google Scholar

Babin, M.A. and Kuznetsov, S.O. (2013). Computing premises of minimal cover of functional dependencies is intractable, Discrete Applied Mathematics 161(6): 742-749.10.1016/j.dam.2012.10.026Search in Google Scholar

Bartl, E., Rezankova, H. and Sobisek, L. (2011). Comparison of classical dimensionality reduction methods with novel approach based on formal concept analysis, in J.T. Yao et al. (Eds.), Rough Set and Knowledge Technology, Lecture Notes in Computer Science, Vol. 6954, Springer, Berlin/Heidelberg, pp. 26-35.10.1007/978-3-642-24425-4_6Search in Google Scholar

Bazhanov, K. and Obiedkov, S. (2014). Optimizations in computing the Duquenne-Guigues basis of implications, Annals of Mathematics and Artificial Intelligence 70(1): 5-24.10.1007/s10472-013-9353-ySearch in Google Scholar

Belohlavek, R. (2012). Optimal decompositions of matrices with entries fromresiduated lattices, Annals ofMathematics and Artificial Intelligence 22(6): 1405-1425.10.1093/logcom/exr023Search in Google Scholar

Belohlavek, R., Baets, B.D. and Konecny, J. (2014). Granularity of attributes in formal concept analysis, Information Sciences 260(5): 149-170.10.1016/j.ins.2013.10.021Search in Google Scholar

Belohlavek, R., Glodeanu, C. and Vychodil, V. (2013a). Optimal factorization of three-way binary data using triadic concepts, Order 30(2): 437-454.10.1007/s11083-012-9254-4Search in Google Scholar

Belohlavek, R., Kostak, M. and Osicka, P. (2013b). Formal concept analysis with background knowledge: A case study in paleobiological taxonomy of belemnites, International Journal of General Systems 42(4): 426-440.10.1080/03081079.2013.765079Search in Google Scholar

Belohlavek, R., and Macko, J. (2011). Selecting important concepts using weights, in P. Valtchev et al. (Eds.), Formal Concept Analysis, Lecture Notes in Computer Science, Vol. 6628, Springer, Berlin/Heidelberg, pp. 65-80.10.1007/978-3-642-20514-9_7Search in Google Scholar

Belohlavek, R., Sigmund, E. and Zacpal, J. (2011a). Evaluation of IPAQ questionnaires supported by formal concept analysis, Information Sciences 181(10): 1774-1786.10.1016/j.ins.2010.04.011Search in Google Scholar

Belohlavek, R., Osicka, P. and Vychodil, V. (2011b). Factorizing three-way ordinal data using triadic formal concepts, in H. Christiansen et al. (Eds.), Flexible Query Answering Systems, Lecture Notes in Computer Science, Vol. 7022, Springer, Berlin/Heidelberg, pp. 400-411.Search in Google Scholar

Belohlavek, R., and Osicka, P. (2012a). Triadic fuzzy Galois connections as ordinary connections, IEEE International Conference on Fuzzy Systems, Brisbane, Australia, pp. 1-6.10.1109/FUZZ-IEEE.2012.6251320Search in Google Scholar

Belohlavek, R. and Osicka, P. (2012b). Triadic concept lattices of data with graded attributes, International Journal of General Systems 41(2): 93-108.10.1080/03081079.2011.643548Search in Google Scholar

Belohlavek, R., and Trnecka, M. (2013). Basic level in formal concept analysis: Interesting concepts and psychological ramifications, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, pp. 1233-1239.Search in Google Scholar

Belohlavek, R. and Vychodil, V. (2005). Fuzzy attribute logic: Entailment and non-redundant basis, 11th International Fuzzy Systems Association World Congress, Tsinghua, China, pp. 622-627.Search in Google Scholar

Belohlavek, R. and Vychodil, V. (2012). Formal concept analysis and linguistic hedges, International Journal of General Systems 41(5): 503-532.10.1080/03081079.2012.685936Search in Google Scholar

Biao, X., Ruairi, de F., Eric, R. and Micheal, F. (2012). Distributed formal concept analysis algorithms based on an iterative map reduce framework, in F. Domenach et al. (Eds.), Formal Concept Analysis, Lecture Notes in Computer Science, Vol. 7278, Springer, Berlin/Heidelberg, pp. 292-308.Search in Google Scholar

Bloch, I. (2011). Lattices of fuzzy sets and bipolar fuzzy sets and mathematical morphology, Information Sciences 181(10): 2002-2015.10.1016/j.ins.2010.03.019Search in Google Scholar

Borgwardt, S. and Penaloza, R. (2014). Consistency reasoning in lattice-based fuzzy description logics, International Journal of Approximate Reasoning 55(9): 1917-1938.10.1016/j.ijar.2013.07.006Search in Google Scholar

Bouaud, J., Messai, N., Laouenan, C., Mentre, F. and Seroussi, B. (2013). Elicitating patient patterns of physician non-compliance with breast cancer guidelines using formal concept analysis, Studies in Health Technology and Informatics 180: 471-481.Search in Google Scholar

Butka, P., Pocs, J. and Pocsova, J. (2012). Use of concept lattices for data tables with different types of attributes, Journal of Information and Organizational Sciences 36(1): 1-12.Search in Google Scholar

Chen, J., Lia, J., Lin, Y., Lin, G. and Ma, Z. (2015). Relations of reduction between covering generalized rough sets and concept lattices, Information Sciences 304: 16-27.10.1016/j.ins.2014.11.053Search in Google Scholar

Chen, R.C., Bau, C.T. and Yeh, C.J. (2011). Merging domain ontologies based on theWordNet system and fuzzy formal concept analysis techniques, Applied Soft Computing 11(2): 1908-1923.10.1016/j.asoc.2010.06.007Search in Google Scholar

Ciobanu, G. and Vaideanu, C. (2014). Similarity relations in fuzzy attribute-oriented concept lattices, Fuzzy Sets and Systems 275: 88-109.10.1016/j.fss.2014.12.011Search in Google Scholar

Codocedo, V., Taramasco, C. and Astudillo, H. (2011). Cheating to achieve formal concept analysis over a large formal context, Proceedings of the 11th International Conference on Concept Lattices and Their Applications, Kosice, Slovakia, pp. 349-362.Search in Google Scholar

Codocedo, V., Lykourentzou, I. and Napoli, A. (2012). Semantic querying of data guided by formal concept analysis, Formal Concept Analysis for Artificial Intelligence, Nancy, France.Search in Google Scholar

Cook, T.M. and Coombs, M. (2004). Using formal concept analysis (FCA) to model and represent counterdeception analytic tasks, Proceedings of the 13th International Conference on Behavior Representation in Modeling and Simulation, Arlington, VA, USA, pp. 7-8.Search in Google Scholar

Croitorua, M., Orenb, N., Milesc, S. and Luckc, M. (2012). Graphical norms via conceptual graphs, Knowledge-Based Systems 29: 31-43.10.1016/j.knosys.2011.06.025Search in Google Scholar

Dau, F. (2013). Towards scalingless generation of formal contexts from an ontology in a triple stores, International Journal of Conceptual Structures and Smart Applications 1(1): 18-38.10.4018/ijcssa.2013010102Search in Google Scholar

Davey, B.A. and Priestley, H.A. (2002). Introduction to Lattices and Order, Cambridge University Press, Cambridge.10.1017/CBO9780511809088Search in Google Scholar

De Maio, C., Fenza, G., Loia, V. and Senatore, S. (2012a). Hierarchical web resources retrieval by exploiting fuzzy formal concept analysis, Information Processing and Management 48(3): 399-418.10.1016/j.ipm.2011.04.003Search in Google Scholar

De Maio, C., Fenza, G., Gaeta, M., Loia, V., Orciuoli, F. and Senatore, S. (2012b). RSS-based e-learning recommendations exploiting fuzzy FCA for knowledge modeling, Applied Soft Computing 12(1): 113-124.10.1016/j.asoc.2011.09.004Search in Google Scholar

De Maio, C., Fenza, G., Gallo, M., Loia, V. and Senatore, S. (2014). Formal and relational concept analysis for fuzzy-based automatic semantic annotation, Applied Intelligence 40(1): 153-174.10.1007/s10489-013-0451-7Search in Google Scholar

Denniston, J.T.,Melton, A. and Rodabaugh, S.E. (2013). Formal concept analysis and lattice-valued Chu systems, Fuzzy Sets and Systems 216: 52-90.10.1016/j.fss.2012.09.002Search in Google Scholar

Dias, S.M., Zarate, L.E. and Vieira, N.J. (2013). Extracting reducible knowledge from ANN with JBOS and FCANN approaches, Expert Systems with Applications 40(8): 3087-3095.10.1016/j.eswa.2012.12.024Search in Google Scholar

Dias, S.M., and Vieira, N.J. (2013). Applying the JBOS reduction method for relevant knowledge extraction, Expert Systems with Applications 40(5): 1880-1887.10.1016/j.eswa.2012.10.010Search in Google Scholar

Dias, S.M. and Vieira, N.J. (2015). Concept lattices reduction: Definition, analysis and classification, Expert Systems with Applications 42(20): 7084-7097, DOI: 10.1016/j.eswa.2015.04.04410.1016/j.eswa.2015.04.044Search in Google Scholar

Distel, F. (2012). Adapting fuzzy formal concept analysis for fuzzy description logics, Proceedings of CLA, Fuengirola, Spain, pp. 163-174.Search in Google Scholar

Djouadi, Y. (2011). Extended Galois derivation operators for information retrieval based on fuzzy formal concept lattice, in S. Benferhat et al. (Eds.), Scalable Uncertainty Management, Lecture Notes in Computer Science, Vol. 6929, Springer, Berlin/Heidelberg, pp. 346-358.10.1007/978-3-642-23963-2_27Search in Google Scholar

Djouadi, Y. and Prade, H. (2009). Interval-valued fuzzy formal concept analysis, in J. Rauch et al. (Eds.), Foundations of Intelligent System, Lecture Notes in Artificial Intelligence, Vol. 5722, Springer, Berlin/Heidelberg, pp. 592-601.10.1007/978-3-642-04125-9_62Search in Google Scholar

Doerfel, S., Jaschke, R. and Stumme, G. (2012). Publication analysis of the formal concept analysis community, in F. Domenach et al. (Eds.), Formal Concept Analysis, Lecture Notes in Computer Science, Vol. 7278, Springer, Berlin/Heidelberg, pp. 77-95.10.1007/978-3-642-29892-9_12Search in Google Scholar

Du, Y. and Hai, Y. (2013). Semantic ranking of web pages based on formal concept analysis, Journal of Systems and Software 86(1): 187-197.10.1016/j.jss.2012.07.040Search in Google Scholar

Dubois, D. and Prade, H. (2012). Possibility theory and formal concept analysis: Characterizing independent sub-contexts, Fuzzy Sets and Systems 196: 4-16.10.1016/j.fss.2011.02.008Search in Google Scholar

Endres D., Adam, R., Giese. M.A. and Noppeney, U. (2012). Understanding the semantic structure of human fMRI brain recordings with formal concept analysis, in F. Domenach et al. (Eds.), Formal Concept Analysis, Lecture Notes in Computer Science, Vol. 7278, Springer, Berlin/Heidelberg, pp. 96-111.10.1007/978-3-642-29892-9_13Search in Google Scholar

Eklund, P., Ducrou, J. and Dau, F. (2012). Concept similarity and related categories in information retrieval using formal concept analysis, International Journal of General Systems 41(8): 826-846.10.1080/03081079.2012.707451Search in Google Scholar

Elzinga, P., Viaene, S., Poelmans, J., Dedene, G. and Morsing, S. (2010). Terrorist threat assessment with formal concept analysis, Proceedings of the 2010 IEEE International Conference on Intelligence and Security Informatics, Vancouver, BC, Canada, pp. 77-82.Search in Google Scholar

Fan, F., Hong, W., Song, J., Jing, J. and Ji, S. (2013). A visualization method for Chinese medicine knowledge discovery based on formal concept analysis, ICIC Express Letters 4(3): 801-808.Search in Google Scholar

Ferjani, F., Elloumi, S., Jaoua, A., Ben Yahia, S., Ismail, S. and Ravan, S. (2012). Formal context coverage based on isolated labels: An efficient solution for text feature extraction, Information Sciences 188: 198-214.10.1016/j.ins.2011.10.023Search in Google Scholar

Formica, A. (2012). Semantic web search based on rough sets and fuzzy formal concept analysis, Knowledge-Based Systems 26(3): 40-47.10.1016/j.knosys.2011.06.018Search in Google Scholar

Formica, A. (2013). Similarity reasoning for the semantic web based on fuzzy concept lattices: An informal approach, Information Systems Frontiers 15(3): 511-520.10.1007/s10796-011-9340-ySearch in Google Scholar

Fowler, M. (2013). The taxonomy of a Japanese stroll garden: An ontological investigation using formal concept analysis, Axiomathes 13(1): 43-59.10.1007/s10516-012-9195-ySearch in Google Scholar

Fu, H. and Mephu Nguifo, E. (2004). A parallel algorithm to generate formal concepts for large data, in P. Eklund (Ed.), Concept Lattices, Lecture Notes in Computer Science, Vol. 2961, Springer, Berlin/Heidelberg, pp. 394-401.10.1007/978-3-540-24651-0_33Search in Google Scholar

Ganter, B. and Glodeanu, C.V. (2012). Ordinal factor analysis, in F. Domenach et al. (Eds.), Formal Concept Analysis, Lecture Notes in Computer Science, Vol. 7278, Springer, Berlin/Heidelberg, pp. 128-139.10.1007/978-3-642-29892-9_15Search in Google Scholar

Ganter, B. and Meschke, C. (2011). A formal concept analysis approach to rough data tables, in H. Sakai et al. (Eds.), Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, Lecture Notes in Computer Science, Vol. 6600, Springer, Berlin/Heidelberg, pp. 37-61.10.1007/978-3-642-21563-6_3Search in Google Scholar

Ganter, B. and Wille, R. (1999). Formal Concept Analysis: Mathematical Foundation, Springer-Verlag, Berlin.10.1007/978-3-642-59830-2Search in Google Scholar

Galitsky, B.A., Ilvovsky, D., Strok, F. and Kuznetsov, S.O. (2013). Improving text retrieval efficiency with pattern structures on parse thickets, Proceedings of FCAIR 2013, Moscow, Russia, pp. 6-21.Search in Google Scholar

Glodeanu, C.V. (2011). Factorization with hierarchical classes analysis and formal concept analysis, in P. Valtchev et al. (Eds.), Formal Concept Analysis, Lecture Notes in Computer Science, Vol. 6628, Springer, Berlin/Heidelberg, pp. 107-118.10.1007/978-3-642-20514-9_10Search in Google Scholar

Glodeanu, C.V. (2012). Attribute dependency in fuzzy setting, Proceedings of CLA 2012, Fuengirola, Spain, pp. 127-138.Search in Google Scholar

Glodeanu, C.V. and Ganter, B. (2012). Applications of ordinal factor analysis, in P. Cellier et al. (Eds.), Formal Concept Analysis, Lecture Notes in Computer Science, Vol. 7880, Springer, Berlin/Heidelberg pp. 109-124.Search in Google Scholar

Gonzalez Calabozo, J.M., Pelaez-Moreno, C. and Valverde-Albacete, F.J. (2011). Gene expression array exploration using K-formal concept analysis, in P. Valtchev and R. J¨aschke (Eds.), Proceedings of the 9th International Conference ICFCA 2011, Lecture Notes in Computer Science, Vol. 6628, Springer, Berlin/Heidelberg, pp. 119-134.Search in Google Scholar

Hamrouni, T., Ben Yahia, S. and Mephu Nguifo, E. (2013). Looking for a structural characterization of the sparseness measure of (frequent closed) itemset contexts, Information Sciences 222: 343-361.10.1016/j.ins.2012.08.005Search in Google Scholar

Helen, Z., David, J. and Zhao, X.J. (2013). Construction of new energy-saving building materials based on formal concept analysis methods, Advanced Materials Research 738: 133-136.10.4028/www.scientific.net/AMR.738.133Search in Google Scholar

Helmi, B.H., Rahmani, A.T. and Pelikan, M. (2014). A factor graph based genetic algorithm, International Journal of Applied Mathematics and Computer Science 24(3): 621-633, DOI: 10.2478/amcs-2014-0045.10.2478/amcs-2014-0045Search in Google Scholar

Ignatov, D.I., Kuznetsov, S.O., Magizov, R.A. and Zhukov, L.E. (2011). From triconcepts to triclusters, in S.O. Kuznetsov et al. (Eds.) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, Lecture Notes in Computer Science, Vol. 6743, Springer, Berlin/Heidelberg, pp. 257-264.10.1007/978-3-642-21881-1_41Search in Google Scholar

Ignatov, D.I., Gnatyshak, D.V., Kuznetsov, S.O. and Mirkin, B.G. (2015). Triadic formal concept analysis and triclustering: Searching for optimal patterns, Machine Learning 101(1): 271-302, DOI:10.1007/s10994-015-5487-y.10.1007/s10994-015-5487-ySearch in Google Scholar

Ilvovsky, D. and Klimushkin, M. (2013). FCA-based search for duplicate objects in ontologies, Proceedings of FCAIR, Moscow, Russia, pp. 36-46.Search in Google Scholar

Iordache, O. (2011). Modeling multi-level systems, Understanding Complex Systems 70: 143-163.10.1007/978-3-642-17946-4_9Search in Google Scholar

Junli, L., Zongyi, H. and Qiaoli, Z. (2013). An entropy-based weighted concept lattice for merging multi-source geo-ontologies, Entropy 15(6): 2303-2318.10.3390/e15062303Search in Google Scholar

Kaiser, T.B. and Schmidt, S.E. (2013). A macroscopic approach to FCA and its various fuzzifications, in F. Domenach et al. (Eds.), Formal Concept Analysis, Lecture Notes in Computer Science, Vol. 7278, Springer, Berlin/Heidelberg, pp. 140-147.Search in Google Scholar

Kang, X., Li, D., Wang, S. and Qu, K. (2012a). Formal concept analysis based on fuzzy granularity base for different granulations, Fuzzy Sets and Systems 203: 33-48.10.1016/j.fss.2012.03.003Search in Google Scholar

Kang, X., Li, D., Wang, S. and Qu, K. (2012b). Rough set model based on formal concept analysis, Information Sciences 222: 611-625.10.1016/j.ins.2012.07.052Search in Google Scholar

Kaytoue, M., Kuznetsov, S.O., Napoli, A. and Polaillon, G. (2011a). Symbolic data analysis and formal concept analysis, XVIIIeme Rencontres de la Societe Francophone de Classification-SFC, Orléans, France, pp. 1-4.Search in Google Scholar

Kaytoue, M., Kuznetsov, S.O., Napoli, A. and Duplessis, S. (2011b). Mining gene expression data with pattern structures in formal concept analysis, Information Sciences 181: 1989-2001.10.1016/j.ins.2010.07.007Search in Google Scholar

Krajca, P, Outrata, J. and Vychodil, V. (2008). Parallel recursive algorithm for FCA, Proceedings of CLA, Olomouc, Czech Republic, pp. 71-82.Search in Google Scholar

Krajca, P., Outrata, J. and Vychodil, V. (2012). Concept lattices of incomplete data, in F. Domenach et al. (Eds.), Formal Concept Analysis, Lecture Notes in Computer Science, Vol. 7278, Springer, Berlin/Heidelberg, pp. 180-194.Search in Google Scholar

Korei, A. (2013). Applying formal concept analysis in machine-part grouping problems, Proceedings of the 11th International Symposium on Applied Machine Intelligence and Informatics 2013, Herl’any, Slovakia, pp. 197-200.Search in Google Scholar

Kuznetsov, S.O. (2013). Fitting pattern structures to knowledge discovery in big data, in P. Cellier et al. (Eds.), Formal Concept Analysis, Lecture Notes in Computer Science, Vol. 7880, Springer, Berlin/Heidelberg, pp. 254-266.10.1007/978-3-642-38317-5_17Search in Google Scholar

Kuznetsov, S.O. and Obiedkov, S.A. (2002). Comparing performance of algorithms for generating concept lattices, Journal of Experimental and Theoretical Artificial Intelligence 14(2-3): 189-216.10.1080/09528130210164170Search in Google Scholar

Kuznetsov, S.O. and Poelmans, J. (2013). Knowledge representation and processing with formal concept analysis, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3(3): 200-215.10.1002/widm.1088Search in Google Scholar

Langdon, W.B., Yoo, S. and Harma, M. (2011). Formal concept analysis on graphics hardware, Proceedings of CLA, Nancy, France, pp. 413-416.Search in Google Scholar

Lei, Y. and Tian, J. (2012). Concepts with negative-values and corresponding concept lattices, Proceedings of the 9th International Conference on Fuzzy Systems and Knowledge Discovery, Sichuan, China, pp. 1005-1008.Search in Google Scholar

Li, J., Changlin, M. and Yuejin, L. (2011a). A heuristic knowledge-reduction method for decision formal contexts, Computers and Mathematics with Applications 61(4): 1096-1106.10.1016/j.camwa.2010.12.060Search in Google Scholar

Li, J., Changlin, M. and Yuejin, L. (2011b). Knowledge reduction in decision formal contexts, Knowledge-Based Systems 24(5): 709-715.10.1016/j.knosys.2011.02.011Search in Google Scholar

Li, J., Mei, C. and Lv, Y. (2012a). Knowledge reduction in real decision formal contexts, Information Sciences 189(5): 191-207.10.1016/j.ins.2011.11.041Search in Google Scholar

Li, J., Mei, C. and Lv, Y. (2012b). Knowledge reduction in formal decision contexts based on an order-preserving mapping, International Journal of General Systems 41(5): 143-161.10.1080/03081079.2011.634410Search in Google Scholar

Li, J., Mei, C. and Lv, Y. (2013a). Incomplete decision contexts: Approximate concept construction, rule acquisition and knowledge reduction, International Journal of Approximate Reasoning 54(1): 149-165.10.1016/j.ijar.2012.07.005Search in Google Scholar

Li, J., Mei, C., Aswani Kumar, Ch. and Lv, Y. (2013b). On rule acquisition in decision formal contexts, International Journal of Machine Learning and Cybernetics 4(6): 721-731.10.1007/s13042-013-0150-zSearch in Google Scholar

Li, B., Suna, X. and Leungc, H. (2013c). Combining concept lattice with call graph for impact analysis, Advances in Engineering Software 53: 41-43.10.1016/j.advengsoft.2012.07.001Search in Google Scholar

Li, J., Mei, C., Xu,W. and Qian, Y. (2015). Concept learning via granular computing: A cognitive viewpoint, Information Sciences 298: 447-467.10.1016/j.ins.2014.12.010709428332226109Search in Google Scholar

Li, M.Z. and Guo, L. (2013). Formal query systems on contexts and a representation of algebraic lattices, Information Sciences 239: 72-74.10.1016/j.ins.2013.03.032Search in Google Scholar

Li,M.Z. and Mi, J.S. (2013). The strong direct product of formal contexts, Information Sciences 226: 47-67.10.1016/j.ins.2012.10.032Search in Google Scholar

Li, S.T. and Tsai, F.C. (2013). A fuzzy conceptualization model for text mining with application in opinion polarity classification, Knowledge-Based Systems 39: 23-33.10.1016/j.knosys.2012.10.005Search in Google Scholar

Ma, J.M. and Zhang, W.X. (2013). Axiomatic characterizations of dual concept lattices, International Journal of Approximate Reasoning 54(5): 690-697.10.1016/j.ijar.2013.01.007Search in Google Scholar

Macko, J. (2013). User-friendly fuzzy FCA, in P. Cellier et al. (Eds.), Proceedings of the 11th International Conference ICFCA 2013, Lecture Notes in Computer Science, Vol. 7880, Springer, Berlin/Heidelberg, pp. 156-171.10.1007/978-3-642-38317-5_10Search in Google Scholar

Mariano, F.L., Asuncion, G.P. and Mari Carmen, S.F. (2013). Methodological guidelines for reusing general ontologies, Data and Knowledge Engineering 86: 242-275.10.1016/j.datak.2013.03.006Search in Google Scholar

Martin, T.P., Abd Rahim, N.H. and Majidian, A. (2013). A general approach to the measurement of change in fuzzy concept lattices, Soft Computing 17(12): 2223-2234.10.1007/s00500-013-1095-6Search in Google Scholar

Martin, T. and Majidian, A. (2013). Finding fuzzy concepts for creative knowledge discovery, International Journal of Intelligent Systems 28(1): 93-114.10.1002/int.21576Search in Google Scholar

Massanet, S., Mayor, G., Mesiar, R. and Torrens, J. (2013). On fuzzy implications: An axiomatic approach, International Journal of Approximate Reasoning 54(9): 1471-1482.10.1016/j.ijar.2013.06.001Search in Google Scholar

Medina, J. (2012a). Relating attribute reduction in formal, object-oriented and property-oriented concept lattices, Computers and Mathematics with Applications 64(6): 1992-2002.10.1016/j.camwa.2012.03.087Search in Google Scholar

Medina, J. (2012b). Multi-adjoint property-oriented and object-oriented concept lattices, Information Sciences 190: 95-2006.10.1016/j.ins.2011.11.016Search in Google Scholar

Medina, J. and Ojeda-Aciego, M. (2012). On multi-adjoint concept lattices based on heterogeneous conjunctors, Fuzzy Sets and Systems 208: 95-110.10.1016/j.fss.2012.02.008Search in Google Scholar

Missaoui, R. and Kwuida, L. (2011). Mining triadic association rules from ternary relations, in P. Valtchev and R. Jäschke (Eds.), Proceedings of the 9th International Conference ICFCA 2011, Lecture Notes in Computer Science, Vol. 6628, Springer, Berlin/Heidelberg, pp. 204-218.10.1007/978-3-642-20514-9_16Search in Google Scholar

Muangprathub, J., Boonjing, V. and Pattaraintakorn, P. (2013). A new case-based classification using incremental concept lattice knowledge, Data and Knowledge Engineering 83: 39-53.10.1016/j.datak.2012.10.001Search in Google Scholar

Muszyński, M. and Osowski, S. (2013). Data mining methods for gene selection on the basis of gene expression arrays, International Journal of Applied Mathematics and Computer Science 24(3): 657-668, DOI: 10.2478/amcs-2014-0048.10.2478/amcs-2014-0048Search in Google Scholar

Neznanov, A. and Kuznetsov, S.O. (2013). Information retrieval and knowledge discovery with FCART, in S.O. Kuznetsov et al. (Eds.), Proceedings of FCAIR, Vol. 977, Moscow, pp. 74-82.Search in Google Scholar

Nguyen, T.T., Hui, S.C and Chang, K. (2011). A lattice-based approach for mathematical search using formal concept analysis, Expert Systems with Applications 39(5): 5820-5828.10.1016/j.eswa.2011.11.085Search in Google Scholar

Nguyen, V.A. and Yamamoto, A. (2012). Learning from graph data by putting graphs on the lattice, Expert Systems with Applications 39(12): 11172-11182.10.1016/j.eswa.2012.03.035Search in Google Scholar

Obiedkov, S. (2012). Modeling preferences over attribute sets in formal concept analysis, in F. Domenach et al. (Eds.), Proceedings of the 10th International Conference ICFCA 2012, Lecture Notes in Computer Science, Vol. 7278, Springer, Berlin/Heidelberg, pp. 227-243.10.1007/978-3-642-29892-9_22Search in Google Scholar

Outrata, J. and Vychodil, V. (2012). Fast algorithm for computing fixpoints of Galois connections induced by object-attribute relational data, Information Sciences 185(1): 114-127.10.1016/j.ins.2011.09.023Search in Google Scholar

Pavlovic, D. (2012). Quantitative concept analysis, in F. Domenach et al. (Eds.), Formal Concept Analysis, Lecture Notes in Computer Science, Vol. 7278, Springer, Berlin/Heidelberg, pp. 260-277.10.1007/978-3-642-29892-9_24Search in Google Scholar

Pedrycz, W. (2013). Granular Computing Analysis and Design of Intelligent Systems, CRC Press, Boca Raton, FL.10.1201/b14862Search in Google Scholar

Pei, Z., Ruan, D., Meng, D. and Liu, Z. (2013). Formal concept analysis based on the topology for attributes of a formal context, Information Sciences 236: 66-82.10.1016/j.ins.2013.02.027Search in Google Scholar

Pocs, J. (2012). On possible generalization of fuzzy concept lattices using dually isomorphic retracts, Information Sciences 210: 89-98.10.1016/j.ins.2012.05.004Search in Google Scholar

Poelmans, J. (2011). Formally analyzing the concepts of domestic violence, Expert Systems with Applications 38(4): 3116-3130.10.1016/j.eswa.2010.08.103Search in Google Scholar

Poelmans, J., Ignatov, D.I., Kuznetsov, S.O. and Dedene, G. (2013a). Formal concept analysis in knowledge processing: A survey on models and techniques, Expert Systems with Applications 40(16): 6601-6623.10.1016/j.eswa.2013.05.007Search in Google Scholar

Poelmans, J., Kuznetsov, S.O., Ignatov, D.I. and Dedene, G. (2013b). Formal concept analysis in knowledge processing: A survey on applications, Expert Systems with Applications 40(16): 6538-6560.10.1016/j.eswa.2013.05.009Search in Google Scholar

Poelmans, J., Elzinga, P. and Dedene, G. (2013c). Retrieval of criminal trajectories with an FCA-based approach, in O. Kuznetsov et al. (Eds.), Proceedings of FCAIR, Vol. 977, Moscow, pp. 83-94.Search in Google Scholar

Poelmans, J., Ignatov, D.I., Kuznetsov, S.O. and Dedene, G. (2014). Fuzzy and rough formal concept analysis: A survey, International Journal of General Systems 43(2): 105-134.10.1080/03081079.2013.862377Search in Google Scholar

Poshyvanyk, D., Gethers, M. and Marcus, A. (2012). Concept location using formal concept analysis and information retrieval, ACM Transactions on Software Engineering and Methodology 21(4), Article No. 23, DOI:10.1145/2377656.2377660.10.1145/2377656.2377660Search in Google Scholar

Priss, U. (2005). Linguistic applications of formal concept analysis, in B. Ganter et al. (Eds.), Formal Concept Analysis: Foundations and Applications, Lecture Notes in Computer Science, Vol. 3626, Springer, Berlin/Heidelberg, pp. 149-160.10.1007/11528784_8Search in Google Scholar

Priss, U. (2006). Formal concept analysis in information science, Annual Review of Information Science and Technology 40(1): 521-543.10.1002/aris.1440400120Search in Google Scholar

Priss, U. (2011). Unix systems monitoring with FCA, in S.Andrews et al. (Eds.), Conceptual Structures for Discovering Knowledge, Lecture Notes in Artificial Intelligence, Vol. 6828, Springer, Berlin/Heidelberg, pp. 243-256.10.1007/978-3-642-22688-5_18Search in Google Scholar

Priss, U. (2012). Concept lattices and median networks, Proceedings of CLA, Derby, UK, pp. 351-354.Search in Google Scholar

Priss, U., Peter, R. and Jensen, N. (2012). Using FCA for modelling conceptual difficulties in learning processes, in S. Andrews et al. (Eds.), Conceptual Structures for Discovering Knowledge, Vol. 6828, Springer, Berlin/Heidelberg, pp. 161-173.Search in Google Scholar

Priss, U., Jensen, N. and Rod, O. (2013). Using conceptual structures in the design of computer-based assessment software, in H.D. Pfeiffer et al. (Eds.), Conceptual Structures for Discovering Knowledge, Lecture Notes in Artificial Intelligence, Vol. 7735, Springer, Berlin/ Heidelberg, pp. 193-209.10.1007/978-3-642-35786-2_10Search in Google Scholar

Qin, X., Liu, K. and Tang, S. (2013). Fuzzy FCA-based web service discovery, Journal of Information and Computational Science 9(17): 5477-5484.Search in Google Scholar

Rainer, B. and Ganapati, P. (2011). Formal concept analysis: Ranking and prioritization for multi-indicator systems, Environmental and Ecological Statistics 5: 117-133.10.1007/978-1-4419-8477-7_8Search in Google Scholar

Radvansky, M., Sklenar, V. and Snasel, V. (2013). Evaluation of stream data by formal concept analysis, in M. Pechenizkiy and M. Wojciechowski (Eds.), New Trends in Databases and Information Systems, Advances in Intelligent Systems and Computing, Vol. 185, Springer, Berlin/Heidelberg pp. 131-140.10.1007/978-3-642-32518-2_13Search in Google Scholar

Romanov, V., Poluektova, A. and Sergienko, O. (2012). Adaptive EIS with business rules discovered by formal concept analysis, in C. Moller and S. Chaudhry (Eds.), Reconceptualizing Enterprise Information Systems, Lecture Notes in Business Information Processing, Vol. 105, Springer, Berlin/Heidelberg, pp. 105-117.10.1007/978-3-642-28827-2_8Search in Google Scholar

Rouane, H.M., Huchard, M., Napoli, A. and Valtchev, P. (2013). Relational concept analysis: Mining concept lattices from multi-relational data, Annals of Mathematics and Artificial Intelligence 67(1): 81-108.10.1007/s10472-012-9329-3Search in Google Scholar

Ruairi, de F. (2013). Formal concept analysis via atomic priming, in P. Cellier et al. (Eds.), Formal Concept Analysis, Lecture Notes and Computer Science, Vol. 7880, Springer, Berlin/Heidelberg, pp. 92-108.Search in Google Scholar

Saquer, J. and Deogun, J.S. (2001). Concept approximations based on rough sets and similarity measures, International Journal of Applied Mathematics and Computer Science 11(3): 655-674.Search in Google Scholar

Sarmah, A.K., Hazarika, S.M. and Sinha, S.K. (2015). Formal concept analysis: Current trends and directions, Artificial Intelligence Review 44: 47-86, DOI:10.1007/s10462-013-9404-0.10.1007/s10462-013-9404-0Search in Google Scholar

Sarnovsky, M., Butka, P. and Pocsova, J. (2012). Cloud computing as a platform for distributed fuzzy FCA approach in data analysis, Proceedings of the IEEE 16th International Conference on Intelligent Engineering Systems, Lisbon, Portugal, pp. 291-296.Search in Google Scholar

Sawase, K., Nobuhara, H. and Bede, B. (2009). Visualizing huge image databases by formal concept analysis, Studies in Computational Intelligence 182: 291-296.Search in Google Scholar

Sebastien, N., Fabien, P., Lotfi, L. and Rosine, C. (2013). The agree concept lattice for multidimensional database analysis, in P. Valtchev and R. Jäschke (Eds.), Formal Concept Analysis, Lecture Notes and Computer Science, Vol. 6628, Springer, Berlin/Heidelberg, pp. 219-234.Search in Google Scholar

Senatore, S. and Pasi, G. (2013). Lattice navigation for collaborative filtering by means of (fuzzy) formal concept analysis, Proceedings of the 28th Annual ACM Symposium on Applied Computing, Coimbra, Portugal, pp. 920-926.Search in Google Scholar

Shao, M.W., Leung, Y. and Wu, W.Z. (2014). Rule acquisition and complexity reduction in formal decision contexts, International Journal of Approximate Reasoning 55(1): 259-274.10.1016/j.ijar.2013.04.011Search in Google Scholar

Simiński, K. (2012). Neuro-rough-fuzzy approach for regression modelling from missing data, International Journal of Applied Mathematics and Computer Science 22(2): 461-476, DOI:10.2478/v10006-012-0035-4.10.2478/v10006-012-0035-4Search in Google Scholar

Singh, P.K. and Aswani Kumar, Ch. (2012a). Interval-valued fuzzy graph representation of concept lattice, Proceedings of the 12th ISDA, Kochi, India, pp. 604-609.10.1109/ISDA.2012.6416606Search in Google Scholar

Singh, P.K. and Aswani Kumar, Ch. (2012b). A method for decomposition of fuzzy formal context, Procedia Engineering 38: 1852-1857.10.1016/j.proeng.2012.06.228Search in Google Scholar

Singh, P.K. and Aswani Kumar, Ch. (2014). Bipolar fuzzy graph representation of concept lattice, Information Sciences 288: 437-448.10.1016/j.ins.2014.07.038Search in Google Scholar

Singh, P.K. and Aswani Kumar, Ch. (2015a). A note on computing the crisp order context of a fuzzy formal context for knowledge reduction, Journal of Information Processing Systems 11(2): 184-204.Search in Google Scholar

Singh, P.K. and Aswani Kumar, Ch. (2015b). Analysis of composed contexts through projection, International Journal of Data Analysis Techniques and Strategies, (in press).10.1504/IJDATS.2016.10000319Search in Google Scholar

Singh, P.K., Aswani Kumar, Ch. and Li, J. (2015a). Concepts reduction in formal concept analysis with fuzzy setting using Shannon entropy, International Journal of Machine Learning and Cybernetics, DOI: 10.1007/s13042-014-0313-6.10.1007/s13042-014-0313-6Search in Google Scholar

Singh, P.K., Aswani Kumar, Ch. and Jinhai, Li (2015b). Knowledge representation using interval-valued fuzzy formal concept lattice, Soft Computing, DOI: 10.1007/s00500-015-1600-1.10.1007/s00500-015-1600-1Search in Google Scholar

Singh, P.K. and Gani, A. (2015). Fuzzy concept lattice reduction using Shannon entropy and Huffman coding, Journal of Applied Non-Classical Logics 25(2): 101-119, DOI: 10.1080/11663081.2015.1039857.10.1080/11663081.2015.1039857Search in Google Scholar

Slezak, D. (2012). Rough sets and FCA-Scalability challenges, in F. Domenach et al. (Eds.), Formal Concept Analysis, Lecture Notes and Computer Science, Vol. 7378, Springer, Berlin/Heidelberg, p. 6.Search in Google Scholar

Spoto, A., Stefanutti, L. and Vidotto, G. (2010). Knowledge space theory, formal concept analysis, and computerized psychological assessment, Behavior Research Methods 42(1): 342-350.10.3758/BRM.42.1.34220160314Search in Google Scholar

Tadrat, J., Boonjing, V. and Pattaraintakorn, P. (2012). A new similarity measure in formal concept analysis for case-based reasoning, Expert Systems with Applications 39(1): 967-972.10.1016/j.eswa.2011.07.096Search in Google Scholar

Tang, P., Huia, S.C. and Fong, C.M.A. (2015). A lattice-based approach for chemical structural retrieval, Engineering Applications of Artificial Intelligence 39: 215-222.10.1016/j.engappai.2014.12.006Search in Google Scholar

Tho, Q.T., Hui, S.C. and Cao, T.H. (2006). Automatic fuzzy ontology generation for semantic web, IEEE Transactions on Knowledge and Data Engineering 18(6): 842-856.10.1109/TKDE.2006.87Search in Google Scholar

Trabelsi, C., Jelassi, N. and Yahia, S.B. (2012). Scalable mining of frequent tri-concepts from Folksonomies, in P.-N. Tan et al. (Eds.), Advances in Knowledge Discovery and Data Mining, Lecture Notes and Computer Science, Vol. 7302, Springer, Berlin/Heidelberg, pp. 231-242.10.1007/978-3-642-30220-6_20Search in Google Scholar

Vityaev, E.E., Demin, A.V. and Ponomaryov, D.K. (2012). Probabilistic generalization of formal concepts, Programming and Computer Software 38(5): 219-230.10.1134/S0361768812050076Search in Google Scholar

Wang, T.Z and Xu, H.S. (2011). Constructing domain ontology based on fuzzy set and concept lattice, Applied Mechanics and Materials 63-64: 715-718.10.4028/www.scientific.net/AMM.63-64.715Search in Google Scholar

Wang, X. and Li, G. (2012). A similarity measure model based on rough concept lattice, in Y. Wu (Ed.), Software Engineering and Knowledge Engineering: Theory and Practice, Advances in Intelligent and Soft Computing, Vol. 114, Springer, Berlin/Heidelberg, pp. 99-103.10.1007/978-3-642-03718-4_13Search in Google Scholar

Wang, Y., Zhang, J. and Xu, H. (2012). The design of data collection methods in wireless sensor networks based on formal concept analysis, in D. Jin and S. Lin (Eds.), Advances in Computer Science and Information Engineering, Advances in Intelligent and Soft Computing, Vol. 169, Springer, Berlin/Heidelberg, pp. 33-38.10.1007/978-3-642-30223-7_6Search in Google Scholar

Watmough, M. (2014). Discovering the hidden semantics in enterprise resource planning data through formal concept analysis, Studies in Computational Intelligence 495: 291-314.10.1007/978-3-642-35016-0_11Search in Google Scholar

Wille, R. (1982). Restructuring lattice theory: An approach based on hierarchies of concepts, in I. Rival (Ed.), Ordered Sets, Reidel, Dordrecht/Boston, MA, pp. 445-470.10.1007/978-94-009-7798-3_15Search in Google Scholar

Wu, L., Qiua, D. and Mi, J.S. (2012). Automata theory based on complete residuated lattice-valued logic: Turing machines, Fuzzy Sets and Systems 208(12): 43-66.10.1016/j.fss.2012.03.001Search in Google Scholar

Wu, W.Z., Leung, Y. and Mi, J.S. (2009). Granular computing and knowledge reduction in formal contexts, IEEE Transactions on Knowledge and Data Engineering 21(10): 1461-1474.10.1109/TKDE.2008.223Search in Google Scholar

Xu, B., Frein, R.D., Robson, E. and Foghlu, M.O. (2012). Distributed formal concept analysis algorithms based on an iterative MapReduce framework, in F. Domenach et al. (Eds.), Formal Concept Analysis, Lecture Notes in Computer Science, Vol. 7278, Springer, Berlin/Heidelberg, pp. 292-308.10.1007/978-3-642-29892-9_26Search in Google Scholar

Xu, W. and Li, W. (2015). Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets, IEEE Transactions on Cybernetics 46(2): 366-379, DOI: 10.1109/TCYB.2014.2361772.10.1109/TCYB.2014.236177225347892Search in Google Scholar

Yan, H., Zou, C., Liu, J. and Wang, Z. (2015). Formal concept analysis and concept lattice: Perspectives and challenges, International Journal of Autonomous and Adaptive Communications Systems 8(1): 81-96.10.1504/IJAACS.2015.067710Search in Google Scholar

Yang, H. (2011). Formal concept analysis based on rough set theory and a construction algorithm of rough concept lattice, in H. Deng et al. (Eds.), Emerging Research in Artificial Intelligence and Computational Intelligence, Communications in Computer and Information Science, Vol. 237, Springer, Berlin/Heidelberg, pp. 239-244.10.1007/978-3-642-24282-3_32Search in Google Scholar

Yang, H.Z., Yee, L. and Shao, M.W. (2011a). Rule acquisition and attribute reduction in real decision formal contexts, Soft Computing 15(6): 1115-1128.10.1007/s00500-010-0578-ySearch in Google Scholar

Yang, Y.P., Shieh, H.M., Tzeng, G.Z., Yen, L. and Shao, M.W. (2011b). Combined rough sets with flow graph and formal concept analysis for business aviation decision-making, Journal of Intelligent Information Systems 36(3): 347-366.10.1007/s10844-009-0110-ySearch in Google Scholar

Yao, Y. (2004). A comparative study of formal concept analysis and rough set theory in data analysis, in S. Tsumoto et al. (Eds.), Rough Sets and Current Trends in Computing, Lecture Notes in Artificial Intelligence, Vol. 3066, Springer, Berlin/Heidelberg, pp. 59-66.10.1007/978-3-540-25929-9_6Search in Google Scholar

Yao, Y., Mi, J., Li, Z. and Xie, B. (2012). The construction of fuzzy concept lattices based on (θ, σ)-fuzzy rough approximation operators, Fundamenta Informaticae 111(1): 33-45.10.3233/FI-2011-552Search in Google Scholar

Yu, J., Hong, W., Li, S., Zhang, T. and Shao, M.W. (2013). A new approach of word sense disambiguation and knowledge discovery of English modal verbs by formal concept analysis, International Journal of Innovative Computing, Information and Control 9(3): 1189-1200.Search in Google Scholar

Zerarga, L. and Djouadi, Y. (2013). Interval-valued fuzzy extension of formal concept analysis for information retrieval, in T. Huang et al. (Eds.), Neural Information Processing, Lecture Notes in Computer Science, Vol. 7663, Springer, Berlin/Heidelberg, pp. 608-615.Search in Google Scholar

Zhai, Y., Li, D. and Qu, K. (2012). Probability fuzzy attribute implications for interval-valued fuzzy set, International Journal of Database Theory and Application 5(4): 95-108. Zhai, Y., Li, D. and Qu, K. (2013). Fuzzy decision implications, Knowledge-Based Systems 37: 230-236.Search in Google Scholar

Zhang, S., Guo, P., Zhang, J., Wang, X. and Pedrycz, W. (2012). A completeness analysis of frequent weighted concept lattices and their algebraic properties, Data and Knowledge Engineering 81-82: 104-117.10.1016/j.datak.2012.08.002Search in Google Scholar

Zhang, L., Zhang, H., Shen, X. and Yin, L. (2013a). A bottom-up algorithm of vertical assembling concept lattices, International Journal of Data Mining and Bioinformatics 7(3): 229-244.10.1504/IJDMB.2013.053311Search in Google Scholar

Zhang, Z., Du, J. and Yin, L. (2013b). Formal concept analysis approach for data extraction from a limited deep web database, Journal of Intelligent Information Systems 41(2): 1-24.10.1007/s10844-013-0242-ySearch in Google Scholar

Zhao, J. and Liu, L. (2011). Construction of concept granule based on rough set and representation of knowledge-based complex system, Knowledge-Based Systems 24(6): 809-815.10.1016/j.knosys.2011.03.002Search in Google Scholar

eISSN:
2083-8492
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Mathématiques, Mathématiques appliquées