1. bookVolume 11 (2017): Edition 4 (December 2017)
Détails du magazine
Format
Magazine
eISSN
2300-5319
Première parution
22 Jan 2014
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Displacement Analysis of the Human Knee Joint Based on the Spatial Kinematic Model by Using Vector Method

Publié en ligne: 30 Dec 2017
Volume & Edition: Volume 11 (2017) - Edition 4 (December 2017)
Pages: 322 - 327
Reçu: 06 Jun 2015
Accepté: 11 Dec 2017
Détails du magazine
Format
Magazine
eISSN
2300-5319
Première parution
22 Jan 2014
Périodicité
4 fois par an
Langues
Anglais

1. Di Gregorio R., Parenti-Castelli V. (2003), A spatial mechanism with higher pairs for modelling the human knee joint, Trans. ASME Jnl of Biomechanical Eng., 125, 232-237.Search in Google Scholar

2. Góra M. (2008), Kinematic analysis of the multi-rod suspension mechanisms of the cars, Doct. Diss, Cracow University of Technology.Search in Google Scholar

3. Morecki A., Knapczyk J., Kędzior K. (2002), Theory of mechanisms and manipulators, WNT, Warsaw 2002.Search in Google Scholar

4. Ottoboni A., Parenti-Castelli V., Sancisi N. (2010), Articular surface approximation in equivalent spatial parallel mechanism models of the human knee joint: an experiment-based assessment, Proc. IMechE, Part H: Engineering in Medicine, 224, 1121-1132.Search in Google Scholar

5. Parenti-Castelli V., Di Gregorio R. (2000), Parallel mechanisms applied to the human knee passive motion simulation, Advances in Robot Kinematics, Kluwer Academic Publ. Dordrecht, 333-343.Search in Google Scholar

6. Parenti-Castelli V., Sancisi N. (2013), Synthesis of spatial mechanisms to model human joints. In: McCarthy J. (eds) 21st Century Kinematics, Springer, London.10.1007/978-1-4471-4510-3_3Search in Google Scholar

7. Saldias D., Martins D., de Mello Roesler C., da Silva Rosa F., Ocampo Moré A., (2013), Modeling of human knee joint in sagittal plane considering elastic behavior of cruciate ligaments, 22nd International Congress of Mechanical Engineering, November 3-7, 2013, Ribeirão Preto, SP, Brazil.Search in Google Scholar

8. Saldias D., Radavelli L., Roesler C., Martin D. (2014), Kinematic synthesis of the passive human knee joint by differential evolution and quaternions algebra: a preliminary study, 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 12-15 Aug. 2014, Brazil.10.1109/BIOROB.2014.6913759Search in Google Scholar

9. Sancisi N., Parenti-Castelli V. (2010), A 1-Dof parallel spherical wrist for the modelling of the knee passive motion, Mechanism and Machine Theory, 45, 658-665.10.1016/j.mechmachtheory.2009.11.009Search in Google Scholar

10. Sancisi N., Parenti-Castelli V., (2011), A sequentially-defined stiffness model of the knee, Mechanism and Machine Theory, 46(12), 1920-1928.10.1016/j.mechmachtheory.2011.07.006Search in Google Scholar

11. Wilson D.R., Feikes J.D., O’Connor J.J. (1998), Ligaments and articular contact guide passive knee flexion, Journal of Biomechanics, 31, 1127-1136.10.1016/S0021-9290(98)00119-5Ouvrir le DOISearch in Google Scholar

12. Woo S., Abramowitch S., Kilger R., Liang R., (2006), Biomechanics of knee ligaments: injury, healing, and repair, Journal of Biomechanics, 39(1), 1–20.10.1016/j.jbiomech.2004.10.02516271583Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo