1. bookVolume 11 (2017): Edition 4 (December 2017)
Détails du magazine
Format
Magazine
eISSN
2300-5319
Première parution
22 Jan 2014
Périodicité
4 fois par an
Langues
Anglais
Accès libre

The Finite Element Analysis of Osteoporotic Lumbar Vertebral Body by Influence of Trabecular Bone Apparent Density and Thickness of Cortical Shell

Publié en ligne: 30 Dec 2017
Volume & Edition: Volume 11 (2017) - Edition 4 (December 2017)
Pages: 285 - 292
Reçu: 30 May 2016
Accepté: 27 Nov 2017
Détails du magazine
Format
Magazine
eISSN
2300-5319
Première parution
22 Jan 2014
Périodicité
4 fois par an
Langues
Anglais

1. Agrawal A., Kalia R. (2014), Osteoporosis: current review, J. Orthop. Traumatol. Rehabil., 7, 101-102.Search in Google Scholar

2. Bono C.M., Einhorn T.A. (2003), Overview of osteoporosis: pathophysiology and determinants of bone strength., Eur. Spine J., 12, 90–96.10.1007/s00586-003-0603-2Ouvrir le DOISearch in Google Scholar

3. Bouzakis K.D., Mitsi S., Michailidis N., Mirisidis I., Mesomeris G., Maliaris G., Korlos A., Kapetanos G., Antonarakos P., Anagnognostidos K. (2004), Loading simulation of lumbar spine vertebrae during a compression test using the finite elements method and trabecular bone strength properties, determined by means of nanoindentations, J. Musculoskelet. Neuronal Interact., 4, 152–158.Search in Google Scholar

4. Cooper C., Cole Z.A. Holroyd C.R., et al. (2011), Secular trends in the incidence of hip and other osteoporotic fractures, Osteoporos Int., 22, 1277–1288.Search in Google Scholar

5. Crawford R.P., Cann C.E., Keaveny T.M. (2003), Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography, Bone, 33, 744–750.10.1016/S8756-3282(03)00210-2Ouvrir le DOISearch in Google Scholar

6. Cummings S.R., Melton III L.J.. (2002), Epidemiology and outcomes of osteoporotic fractures, Lancet 359, 1761–1767.10.1016/S0140-6736(02)08657-9Search in Google Scholar

7. Doblaré M., García J.M., Gómez M.J. (2004), Modelling bone tissue fracture and healing: a review, Eng. Fract. Mech., 71, 1809–1840.Search in Google Scholar

8. Dreischarf M., Zander T., Shirazi-Adl A., Puttlitz C.M., Adam C.J., Chen C.S., et al. (2014), Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together, J. Biomech., 47, 1757–1766.10.1016/j.jbiomech.2014.04.00224767702Search in Google Scholar

9. El-Rich M., Arnoux P.J., Wagnac E., Brunet C., Aubin C.E. (2009), Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions, J. Biomech., 42, 1252–1262.10.1016/j.jbiomech.2009.03.03619427640Ouvrir le DOISearch in Google Scholar

10. Garo A., Arnoux P.J., Wagnac E., Aubin C.E. (2011), Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure, Med. Biol. Eng. Comput. 49, 1371–1379.10.1007/s11517-011-0826-z21947796Search in Google Scholar

11. Gohari E., Nikkhoo M., Haghpanahi M., Parnianpour M. (2013), Analysis of different material theories used in a FE model of a lumbar segment motion, Acta Bioeng. Biomech., 15, 33–41.Search in Google Scholar

12. Helgason B., Perilli E., Schileo E., Taddei F., Brynjólfsson S.S., Viceconti M. (2008), Mathematical relationships between bone density and mechanical properties: A literature review, Clin. Biomech., 23, 135–146.10.1016/j.clinbiomech.2007.08.02417931759Ouvrir le DOISearch in Google Scholar

13. Jaramillo H.E., Gomez L., Garcia J.J. (2015), A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs, Acta Bioeng. Biomeechanics., 17, 15–24.Search in Google Scholar

14. Johnell O., Kanis J.A., Odén A., Sernbo I., Redlund-Johnell I., Petterson C., et al. (2004), Mortality after osteoporotic fractures, Osteoporos. Int., 15, 38–42.Search in Google Scholar

15. Jones A.C., Wilcox R.K., (2008), Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis, Med. Eng. Phys., 30, 1287–1304.10.1016/j.medengphy.2008.09.00618986824Ouvrir le DOISearch in Google Scholar

16. Lin J.T., Lane J.M. (2004), Osteoporosis: a review., Clin. Orthop. Relat. Res., 425, 126–34.Search in Google Scholar

17. Linthorne N. P. (2010), Analysis of standing vertical jumps using a force platform, The Journal of Sports Science and Medicine, 9, 282-287Search in Google Scholar

18. Kim Y.H., Wu M., Kim K. (2013), Stress analysis of osteoporotic lumbar vertebra using finite element model with microscaled beam-shell trabecular-cortical structure, Journal of Applied Mathematics, 2013, 146-152.10.1155/2013/285165Search in Google Scholar

19. Łodygowski T., Kakol W., Wierszycki M., Ogurkowska B.M. (2005), Three-dimensional nonlinear finite element model of the human lumbar spine segment, Acta Bioeng. Biomech., 7, 17–28.Search in Google Scholar

20. McDonald K., Little J., Pearcy M., Adam C. (2010), Development of a multi-scale finite element model of the osteoporotic lumbar vertebral body for the investigation of apparent level vertebra mechanics and micro-level trabecular mechanics, Med. Eng. Phys., 32, 653–661.10.1016/j.medengphy.2010.04.00620439162Ouvrir le DOISearch in Google Scholar

21. Maquer G., Schwiedrzik J., Huber G., Morlock M.M., Zysset P.K. (2015), Compressive strength of elderly vertebrae is reduced by disc degeneration and additional flexion, J. Mech. Behav. Biomed. Mater. 42, 54–66.Search in Google Scholar

22. Melton III L.J., Achenbach S. J. Atkinson E.J., Therneau T.M., Amin S. (2013), Long-term mortality following fractures at different skeletai sites: a population-based cohort study, Osteoporos Int., 24, 1689–1696.Search in Google Scholar

23. Nazarian A., von Stechow D., Zurakowski D., Muller R., Snyder B.D. (2008), Bone Volume Fraction Explains the Variation in Strength and Stiffness of Cancellous Bone Affected by Metastatic Cancer and Osteoporosis, Calcified Tissue International, 83, 368-379.10.1007/s00223-008-9174-xOuvrir le DOISearch in Google Scholar

24. Okamoto Y., Murakami H., Demura S., Kato S., Yoshioka K., Hayashi H., et al. (2014), The effect of kyphotic deformity because of vertebral fracture: a finite element analysis of a 10° and 20° wedge-shaped vertebral fracture model, Spine J., 15, 713–720.Search in Google Scholar

25. Provatidis C., Vossou C., Koukoulis I., Balanika A., Baltas C., Lyritis G. (2010), A pilot finite element study of an osteoporotic L1-vertebra compared to one with normal T-score., Comput. Methods Biomech. Biomed. Engin., 13, 185–95.Search in Google Scholar

26. Su J., Cao L., Li Z., Yu B., Zhang C., Li M. (2009), Three-dimensional finite element analysis of lumbar vertebra loaded by static stress and its biomechanical significance, Chinese J. Traumatol., 12, 153–156.Search in Google Scholar

27. Svedbom A., Hernlund E., Ivergård M., Compston J., Cooper C., Stenmark J., McCloskey E.V, Jönsson B., Kanis J.A. (2013), The EU review panel of the IOF. Osteoporosis in the European Union: a compendium of country-specific reports, Arch. Osteoporos., 8, 137-138.Search in Google Scholar

28. Watanabe I., Furusu K., Kato C., Miki K., Hasegawa J. (2001), Development of practical and simplified human whole body FEM model, JSAE Rev., 22, 189–194.10.1016/S0389-4304(01)00092-3Ouvrir le DOISearch in Google Scholar

29. Wierszycki M., Szajek K., Łodygowski T., Nowak M. (2014), A two-scale approach for trabecular bone microstructure modeling based on computational homogenization procedure, Comput. Mech., 54, 287–298.10.1007/s00466-014-0984-6Ouvrir le DOISearch in Google Scholar

30. Wolfram U., Gross T., Pahr D.H., Schwiedrzik J., Wilke H.J., Zysset P.K. (2012), Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space, J. Mech. Behav. Biomed. Mater., 15, 218–228.10.1016/j.jmbbm.2012.07.00523159819Ouvrir le DOISearch in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo