[1. Ayzenberg-Stepanenko M., Osharovich G., Sher E., Yanovitskaya Z. (2012) Numerical Simulation of Shock-wave Processes in Elastic Media and Structures. Part I: Solving Method and Algorithms, Journal of Mining Science, 48(1), 76–95.]Search in Google Scholar
[2. Ayzenberg-Stepanenko M., Sher E., Osharovich G., Yanovitskaya Z. (2013) Numerical Simulation of Shock-wave Processes in Elastic MEDIA and structures. Part II: Application Results, Journal of Mining Science, 48(5), 839–855.10.1134/S1062739148050097]Ouvrir le DOISearch in Google Scholar
[3. Banerjee P. (1994) Boundary Element Method in Engineering Science, McGraw Hill, New York, London.]Search in Google Scholar
[4. Bonnet M. (1995), Integral Equations and Boundary Elements. Mechanical Application of Solids and Fluids, (in French), CNRS Éditions / Éditions EYROLLES, Paris.]Search in Google Scholar
[5. Brebbia C., Telles J., Wrobel L. (1984), Boundary Element Techniques, Springer, New York.10.1007/978-3-642-48860-3]Search in Google Scholar
[6. Cohen H. (2007) Number Theory Volume II: Analytic and Modern Tools, Springer, New York.]Search in Google Scholar
[7. Eshkuvatov Z. K., Nik Long N. M. A., Abdulkawi M. (2009), Quadrature Formula for Approximating the Singular Integral of Cauchy Type with Unbounded Weight Function on the Edges, Journal of Computational and Applied Mathematics, 233, 334–345.10.1016/j.cam.2009.07.034]Search in Google Scholar
[8. Gruber S., Skews B. (2013) Weak Shock Wave Reflection from Concave Surfaces, Experiments in Fluids, 54(1751), 1-14.]Search in Google Scholar
[9. Guz A.M. Kubenko V., Chernenko M. (1978) Diffraction of Elastic Waves, Naukova Dumka, Kyiv.10.1007/BF00883678]Search in Google Scholar
[10. Isbell W. (2005) Shock Waves: Measuring the Dynamic Response of Materials, Imperial College Press.10.1142/p339]Search in Google Scholar
[11. Kubenko V. (1967) Dynamic Stress Concentration Around an Elliptical Hole, Reports of the Academy of Sciences USSR, 3, 60-64.]Search in Google Scholar
[12. Mikulich O. A. (2016) Dynamic Concentration of the Stresses Near the Holes in Infinity Plates under the Weak Shock Waves, Naukovi notatky, 53, 102-107.]Search in Google Scholar
[13. Mykhas’kiv V., Stankevych V., Zhbadynskyi I., Zhang Ch. (2009) 3-D Dynamic Interaction Between a Penny-shaped Crack and a Thin Interlayer Joining Two Elastic Half-Spaces, International Journal of Fracture, 159(2), 137-149.10.1007/s10704-009-9390-z]Search in Google Scholar
[14. Onyshko L., Senyuk M., Onyshko O (2015) Dynamic Stress Concentration Factors in a Plane with Circular Hole Under the Action of Impact Nonaxisymmetric Loads, Materials Science, 50(5), 755–761.10.1007/s11003-015-9782-3]Search in Google Scholar
[15. Pasternak Ja., Sulym H., Pasternak R. (2013) Dynamic Stress Concentration at Thin Elastic Inclusions under the Antiplane Deformation, Physical and Mathematical Modeling and Information Technologies, 18, 157-164.]Search in Google Scholar
[16. Popov V., Litvin O., Moysyeyenok A. (2009) The Dynamic Problems About the Definition of Stress State Near Thin Elastic Inclusions Under the Conditions of Perfect Coupling, Modern Analysis and Applications, 191, 485-498.10.1007/978-3-7643-9921-4_30]Search in Google Scholar
[17. Ramamohan K.; D N Kim D.; Hwang J. (2010) Fast Fourier Transform: Algorithms and Applications, Springer, New York.]Search in Google Scholar
[18. Savin G. N. (1968) Distribution of the Stresses near the Holes, Naukova Dumka, Kyiv.]Search in Google Scholar
[19. Shvabyuk V., Sulym H., Mikulich O. (2015) Stress State of Plate with Incisions under the Action of Oscillating Concentrated Forces, Acta Mechanica et Automatica, 9(3), 140-144.10.1515/ama-2015-0023]Search in Google Scholar