[1. Babuška I., Strouboulis T. (2001), The finite element method and its reliability, Clarendon Press, Oxford.]Search in Google Scholar
[2. Bertsekas D.P. (1982), Constrained optimization and Lagrange multiplier methods, Athena Scientific, Belmont, Massachusetts.]Search in Google Scholar
[3. Boutin C., Kacprzak G., Thiep D. (2011), Compressibility and permeability of sand–kaolin mixtures. Experiments versus non-linear homogenization schemes, International Journal for Numerical and Analytical Methods in Geomechanics, 35(1), 21-52.10.1002/nag.891]Search in Google Scholar
[4. Brenner S.C., Scott R. (2007), The mathematical theory of finite element methods (Vol. 15), Springer Science & Business Media.]Search in Google Scholar
[5. Chapuis R.P. (1990), Sand-bentonite liners: predicting permeability from laboratory tests, Canadian Geotechnical Journal, 27(1), 47-57.10.1139/t90-005]Ouvrir le DOISearch in Google Scholar
[6. Du X., Ostoja-Starzewski M. (2006), On the size of representative volume element for Darcy law in random media, in Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 462(2074), 2949-2963, The Royal Society.]Search in Google Scholar
[7. Feyel F. (2003), A multilevel finite element method (FE 2) to describe the response of highly non-linear structures using generalized continua, Computer Methods in Applied Mechanics and Engineering, 192(28), 3233-3244.10.1016/S0045-7825(03)00348-7]Search in Google Scholar
[8. Geers M.G.D., Kouznetsova V.G., Brekelmans W.A.M. (2001), Gradient-enhanced computational homogenization for the micro-macro scale transition, Le Journal de Physique IV, 11(PR5), Pr5-145.10.1051/jp4:2001518]Search in Google Scholar
[9. Hill R. (1965), Continuum micro-mechanics of elastoplastic polycrystals, Journal of the Mechanics and Physics of Solids, 13(2), 89-101.10.1016/0022-5096(65)90023-2]Ouvrir le DOISearch in Google Scholar
[10. Inglis H.M., Geubelle P.H., Matouš K. (2008), Boundary condition effects on multiscale analysis of damage localization, Philosophical Magazine, 88(16), 2373-2397.10.1080/14786430802345645]Search in Google Scholar
[11. Juang, C.H., Holtz R.D. (1986), Fabric, pore size distribution, and permeability of sandy soils, Journal of Geotechnical Engineering, 112(9), 855-868.10.1061/(ASCE)0733-9410(1986)112:9(855)]Search in Google Scholar
[12. Kacprzak G. (2006), Etude du comportement mécanique des mélanges sable/argile, PhD ENTPE/INSA, Lyon.]Search in Google Scholar
[13. Kouznetsova V.G., Geers M.G.D., Brekelmans W.A.M. (2010), Computational homogenisation for non-linear heterogeneous solids, Multiscale Modeling in Solid Mechanics: Computational Approaches, 3, 1-42.10.1142/9781848163089_0001]Search in Google Scholar
[14. Mesarovic S.D., Padbidri J. (2005), Minimal kinematic boundary conditions for simulations of disordered microstructures, Philosophical Magazine, 85(1), 65-78.10.1080/14786430412331313321]Search in Google Scholar
[15. Revil A., Cathles L.M. (1999), Permeability of shaly sands, Water Resources Research, 35(3), 651-662.10.1029/98WR02700]Ouvrir le DOISearch in Google Scholar
[16. Wojciechowski M. (2014) Fempy – finite element method in python, http://fempy.org, http://geotech.p.lodz.pl:5080/fempy, last access: August 2017.]Search in Google Scholar
[17. Wojciechowski M., Lefik M. (2016), On the static nature of minimal kinematic boundary conditions, Engineering Transactions, 64(4), 581-587.]Search in Google Scholar