Accès libre

Flexible Structure Control Scheme of a UAVs Formation to Improve the Formation Stability During Maneuvers

À propos de cet article

Citez

1. Ambroziak L., Gosiewski Z. (2014), Two stage switching control for autonomous formation flight of Unmanned Aerial Vehicles, Aerospace Science and Technology, 46, 221-226.10.1016/j.ast.2015.07.015Search in Google Scholar

2. Askari A.; Mortazavi M.; Talebi H.A. (2015), UAV Formation Control via Virtual Structure Approach, Journal of Aerospace Engineering, 28(1), Article number: 04014047 (online).10.1061/(ASCE)AS.1943-5525.0000351Search in Google Scholar

3. Cai D., Sun J., Wu S. (2012), UAVs Formation Flight Control Based on Behavior and Virtual Structure, Communications in Computer and Information Science, 325, 429-438.10.1007/978-3-642-34387-2_49Search in Google Scholar

4. Kownacki C., Ołdziej D. (2015), Flocking Algorithm for Fixed-Wing Unmanned Aerial Vehicles, Advances in Aerospace Guidance, Navigation and Control, Springer, 415-431. Kownacki C., Ołdziej D. (2016), Fixed-wing UAVs Flock Control through Cohesion and Repulsion Behaviours Combined with a Leadership, International Journal of Advanced Robotic Systems, Article number 36 (online),10.1007/978-3-319-17518-8_24Search in Google Scholar

5. Low Ch. B., Ng Q.S. (2011), A flexible virtual structure formation keeping control for fixed-wing UAVs, 9th IEEE International Conference on Control and Automation, 19-21 Decemeber, Santiago, 621-626.10.1109/ICCA.2011.6137876Search in Google Scholar

6. Norman H. M. Li, Hugh H.T. Liu (2008), Formation UAV Flight Control using Virtual Structure and Motion Synchronization, American Control Conference, June 11-13, Seattle, USA, 1782-1787.Search in Google Scholar

7. Quintero S.A.P.,, Collins G.E., Hespanha J.P. (2013), Flocking with Fixed-Wing UAVs for Distributed Sensing: A Stochastic Optimal Control Approach, Conference: American Control Conference, 17-19 June, Washington DC, 2025-2031.10.1109/ACC.2013.6580133Search in Google Scholar

8. Ren W., Beard R. W. (2004), Decentralized scheme for spacecraft formation flying via the virtual structure approach, Journal of Guidance, Control and Dynamics, 27(1), 73–82.10.2514/1.9287Search in Google Scholar

9. Reynolds, C.W. (1987), Flocks, herds and schools: a distributed behavioral model. In ACM SIGGRAPH Computer Graphics, Proceedings of ACM SIGGRAPH ’87, Anaheim, USA, 27-31 July, ACM Press: New York, USA, 25-34.10.1145/37401.37406Search in Google Scholar

10. Seo J., Ahn Ch., Kim Y. (2009), Controller Design for UAV Formation Flight Using Consensus based Decentralized Approach, AIAA Infotech@ Aerospace Conference Unmanned, Unlimited Conference, 6-9 April, 248-259.10.2514/6.2009-1826Search in Google Scholar

11. Shan J., Liu H.T. (2005), Close-formation flight control with motion synchronization, Journal of Guidance, Control and Dynamics, 28(6), 1316–1320.10.2514/1.13953Open DOISearch in Google Scholar

12. Shao Z., Zhu X., Zhou Z., Wang Y. (2014), A Nonlinear Control of 2-D UAVs Formation Keeping via Virtual Structures, Intelligent Robotics and Applications, Lecture Notes in Computer Science, 8917, 420-431.10.1007/978-3-319-13966-1_41Search in Google Scholar

13. Virágh Cs., Vásárhelyi G., Tarcai N., Szörényi T., Somorjai G., Nepusz, T., Vicsek, T. (2014), Flocking algorithm for autonomous flying robots, Bioinspiration & Biomimetics, 9(2), Article number 025012 (online).10.1088/1748-3182/9/2/02501224852272Open DOISearch in Google Scholar

14. Xingping Ch., Serrani A., Ozbay H. (2003), Control of leader-follower formations of terrestrial UAVs, Proceedings. 42nd IEEE Conference on Decision and Control, 9-12 December, 498-503.Search in Google Scholar

15. Yun B., Chen B.M., Lum K.Y., Lee T.H. (2008), A leader-follower formation flight control scheme for UAV helicopters, IEEE International Conference on Automation and Logistics, 1-3 Septemeber, 39-44.Search in Google Scholar