Accès libre

The effects of soil management practices on soil organic matter changes within a productive vineyard in the Nitra viticulture area (Slovakia)

À propos de cet article

Citez

ABDOLLAHI, L. – SCHJØNNING, P. – ELMHOLT, S. – MUNKHOLM, L.J. 2014. The effects of organic matter application and intensive tillage and traffic on soil structure formation and stability. In Soil & Tillage Research, vol. 136, pp. 28–37. DOI: 10.1016/S0167-1987(97)00038-X10.1016/S0167-1987(97)00038-XSearch in Google Scholar

BELAY-TEDLA, A. – ZHOU, X. – SU, B. – WAN, S. – LUO, Y. 2009. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. In Soil Biology & Biochemistry, vol. 41, no. 1, pp. 110–116. DOI: 10.1016/j.soilbio.2008.10.00310.1016/j.soilbio.2008.10.003Search in Google Scholar

BENBI, D.K. – BRAR, K. – TOOR, A.S. – SHARMA, S. 2015. Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system. In Pedosphere, vol. 25, no. 4, pp. 534–545. DOI: 10.1016/S1002-0160(15)30034-510.1016/S1002-0160(15)30034-5Search in Google Scholar

BENBI, D.K. – BRAR, K. – TOOR, A.S. – SINGH, P. – SINGH, H. 2012. Soil carbon pools under poplar-based agroforestry, rice-wheat, and maize-wheat cropping systems in semi-arid India. In Nutrient Cycling in Agroecosystems, vol. 92, no. 1, pp. 107–118. DOI: 10.1007/s10705-011-9475-810.1007/s10705-011-9475-8Search in Google Scholar

BLAIR, G.J. – LEFROY, R.D.B. – LISLE, L. 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural system. In Australian Journal of Agricultural Research, vol. 46, pp. 1459–1466.Search in Google Scholar

BRADY, N.G. – WEIL, R.R. 1999. The nature and properties of soils. 12. ed. New Jersey: Prentice - Hall, Inc. Simons & Schuster A Viacon Comp., 881 p.Search in Google Scholar

CONTEH, A. – BLAIR, G.J. – LEFROY, R.D.B. – WHITBREAD, A. 1999. Labile organic carbon determined by permangante oxidation and its relationships to other measurements of soil organic carbon. In Humic Substances in the Environment, vol. 1, pp. 3–15.Search in Google Scholar

DZIADOWIEC, H. – GONET, S.S. 1999. Przewodnik metodyczny do badań materii organicznej gleb [Methodical guide-book for soil organic matter studies]. Prace Komisji Naukowych Polskiego Towarzystwa Gleboznawczego, N. 120, Komisja chemii gleb, Zespół Materii Organicznej Gleb, N II/16, 65 p.Search in Google Scholar

FECENKO, J. – LOŽEK, O. 2000. Výživa a hnojenie poľných plodín [Nutrition and fertilization of field crops]. Nitra: SPU, pp. 452.Search in Google Scholar

FRÖBERG, M. – GRIP, H. – TIPPING, E. – SVENSSON, M. – STRÖMGREN, M. – KLEJA, D.B. 2013. Long-term effects of experimental fertilization and soil warming on dissolved organic matter leaching from a spruce forest in Northern Sweden. In Geoderma vol. 200–201, pp. 172–179. DOI: 10.1016/j.geoderma.2013.02.00210.1016/j.geoderma.2013.02.002Search in Google Scholar

GALE, W.J. – CAMBARDELLA, C.A. – BAILEY, T.B. 2000. Surface residue- and root-derived carbon in stable and unstable aggregates. In Soil Science Society of American Journal, vol. 64, no. 1, pp. 196–201. DOI: 10.2136/sssaj2000.641196x10.2136/sssaj2000.641196xSearch in Google Scholar

IUSS Working Group WRB. 2006. World reference base for soil resources 2006. 2nd edition. World Soil Resources Reports No. 103. Rome: FAO, pp. 145.Search in Google Scholar

KHORRAMDEL, S. – KOOCHEKI, A. – MAHALLATI, M.N. – KHORASANI, R. – GHORBANI, R. 2013. Evaluation of carbon sequestration potential in corn fields with different management systems. In Soil & Tillage Research, vol. 133, pp. 25–31. DOI: 10.1016/S0167-1987(97)00038-X10.1016/S0167-1987(97)00038-XSearch in Google Scholar

KÖGEL-KNABNER, I. – EKSCHMITT, K. – FLESSA, H. – GUGGENBERGER, G. – MATZNER, E. – MARSCHNER, B. – VON LÜTZOW, M. 2008. An intergrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics and biology. In Journal of Plant Nutrition and Soil Science, vol. 171, no. 1, pp. 5–13. DOI: 10.1002/jpln.20070021510.1002/jpln.200700215Search in Google Scholar

KOLÁŘ, L. – VANĚK, V. – KUŽEL, S. – PETERKA, J. – BOROVÁ-BATT, J. – PEZLAROVÁ, J. 2011. Relationships between quality and quantity of soil labile fraction of the soil carbon in Cambisols after liming during a 5-year period. In Plant Soil and Environment, vol. 57, no. 5, pp. 193–200.Search in Google Scholar

LOBE, I. – AMELUNG, W. – DU PREEZ, C.C. 2001. Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the South African Highveld. In European Journal of Soil Science, vol. 52, no. 1, pp. 93–101. DOI: 10.1046/j.1365-2389.2001.t01-1-00362.x10.1046/j.1365-2389.2001.t01-1-00362.xSearch in Google Scholar

LUGATO, E. – BERTI, A. 2008. Potential carbon sequestration in a cultivated soil under different climate change scenarios: a modelling approach for evaluating promising management practices in north–east Italy. In Agriculture, Ecosystems & Environment, vol. 128, no. 1–2, pp. 97–103. DOI: 10.1016/j.agee.2008.05.00510.1016/j.agee.2008.05.005Search in Google Scholar

ŁOGINOW, W. – WISNIEWSKI, W. – GONET, S.S. – CIESCINSKA, B. 1987. Fractionation of organic carbon based on susceptibility to oxidation. In Polish Journal of Soil Science, vol. 20, pp. 47–52.Search in Google Scholar

McLAUCHLAN, K.K. – HOBBIE, S.E. 2004. Comparison of labile soil organic matter fractionation techniques. In Soil Science Society of American Journal, vol. 68, no. 5, pp. 1616–1625. DOI: 10.2136/sssaj2004.161610.2136/sssaj2004.1616Search in Google Scholar

PETH, S. – HORN, R. – BECKMANN, F. – DONATH, T. – FISCHER, J. – SMUCKER, A.J.M. 2008. Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography. In Soil Science Society of American Journal, vol. 72, pp. 897–907. DOI: 10.2136/sssaj2007.013010.2136/sssaj2007.0130Search in Google Scholar

PRASAD, J.V.N.S. – SRINIVASA RAO, CH. – SRINIVAS, K. – NAGA JYOTHI, CH. – VENKATESWARLU, B. – RAMACHANDRAPPA, B.K. – DHANAPAL, G.N. – RAVICHANDRA, K. – MISHRA, P.K. 2016. Effect of ten years of reduced tillage and recycling of organic matter on crop yields, soil organic carbon and its fractions in Alfisols of semi arid tropics of southern India. In Soil & Tillage Research, vol. 156, pp. 131–139. DOI: 10.1016/j.still.2015.10.01310.1016/j.still.2015.10.013Search in Google Scholar

REEVES, D.W. 1997. The role of soil organic matter in maintaining soil quality in continuous cropping system. In Soil & Tillage Research, vol. 43, no. 1‒2, pp. 131–167. DOI: 10.1016/S0167-1987(97)00038-X10.1016/S0167-1987(97)00038-XSearch in Google Scholar

SCHEPASCHENKO, D.G. – MUKHORTOVA, L.V. – SHVIDENKO, A.Z. – VEDROVA, E.F. 2013. The pool of organic carbon in the soils of Russia. In Eurasian Soil Science, vol. 46, no. 2, pp. 107–116. DOI: 10.1134/S106422931302012910.1134/S1064229313020129Search in Google Scholar

SEMENOV, V.M. – TULINA, A.S. – SEMENOVA, N.A. – IVANNIKOVA, L.A. 2013. Humification and nonhumification pathways of the organic matter stabilization in soil: A Review. In Eurasian Soil Science, vol. 46, pp. 355–368. DOI: 10.1134/S106422931304011X10.1134/S106422931304011XSearch in Google Scholar

SHANG, W. – WU, X. – ZHAO, L. – YUE, G. – ZHAO, Y. – QIAO, Y. – LI, Y. 2016. Seasonal variations in labile soil organic matter fractions in permafrost soils with different vegetation types in the central Qinghai–Tibet Plateau. In Catena, vol. 137, pp. 670–678. DOI: 10.1016/j.catena.2015.07.01210.1016/j.catena.2015.07.012Search in Google Scholar

ŠIMANSKÝ, V. – POLLÁKOVÁ, N. 2014. Soil organic matter and sorption capacity under different soil management practices in a productive vineyard. In Archives of Agronomy and Soil Science, vol. 60, no. 8, pp. 1145–1154. DOI: 10.1080/03650340.2013.86583710.1080/03650340.2013.865837Search in Google Scholar

SIX, J. – BOSSUYT, H. – DEGRYZE, S. – DENEF, K. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. In Soil and Tillage Research, vol. 79, pp. 7–31. DOI: 10.1016/j.still.2004.03.00810.1016/j.still.2004.03.008Search in Google Scholar

STEVENSON, F.J. 1982. Humus chemistry, genesis, composition, reactions. 3. ed. New York: Wiley & Sons, 443 p.Search in Google Scholar

SZOMBATHOVÁ, N. 1999. The comparison of soil carbon susceptibility to oxidation by KMnO4 solutions in different farming systems. In Humic substances in the environment, vol. 1, p. 35–39.Search in Google Scholar

SZOMBATHOVÁ, N. 2010. Chemické a fyzikálno-chemické vlastnosti humusových látok pôd ako ukazovateľ antropogénnych zmien v ekosystémoch (lokality Báb a Dolná Malanta) [Chemical and physico-chemical properties of soil humic substances as an indicator of anthropogenic changes in ecosystems (Báb and Dolná Malanta localities)]. Nitra: SPU, 96 p.Search in Google Scholar

TONG, X. – XU, M. – WANG, X. – BHATTACHARYYA, R. – ZHANG, W. – CONG, R. 2014. Long-term fertilization effects on organic carbon fractions in a red soil of China. In Catena, vol. 113, pp. 251–259. DOI: 10.1016/j.catena.2013.08.00510.1016/j.catena.2013.08.005Search in Google Scholar

VADJUNINA, A.F. – KORCHAGINA, Z.A. 1986. Methods of study of soil physical properties. Moscow: Agropromizdat, 415 p.Search in Google Scholar

VIEIRA, F.C.B. – BAYER, C. – ZANATTA, J.A. – DIECKOW, J. – MIELNICZUK, J. – HE, Z.L. 2007. Carbon management index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems. In Soil & Tillage Research, vol. 96, no. 1‒2, pp. 195–204. DOI: 10.1016/j.still.2007.06.00710.1016/j.still.2007.06.007Search in Google Scholar

YANG, X.Y. – LI, P.R. – ZHANG, S.L. – SUN, B.H. – CHEN, X.P. 2011. Long-term-fertilization effects on soil organic carbon, physical properties, and wheat yield of a loess soil. In Journal of Plant Nutrition and Soil Science, vol. 174, pp. 775–784. DOI: 10.1002/jpln.20100013410.1002/jpln.201000134Search in Google Scholar

eISSN:
1338-4376
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Plant Science, Ecology, other