À propos de cet article

Citez

1. Martinez M1, Mougan I. Fatty acid composition of human brain phospholipids during normal development. J Neurochem. 1998, 1:2528-33.10.1046/j.1471-4159.1998.71062528.xSearch in Google Scholar

2. Tayebati SK, Amenta F. Choline-containing phospholipids: Relevance to brain functional pathways. Clin Chem Lab Med. 2013, 51:513-51.10.1515/cclm-2012-0559Search in Google Scholar

3. Carrie I, Clement M, de Javel D, Frances H, Bourre JM. Specific phospholipid fatty acid composition of brain regions in mice: Effects of n-3 polyunsaturated fatty acid deficiency and phospholipid supplementation. J Lipid Res. 2000, 41:465-72.10.1016/S0022-2275(20)34485-0Search in Google Scholar

4. Haag M. Essential fatty acids and the brain. Can J Psychiatry. 2003, 48:195-203.10.1177/070674370304800308Search in Google Scholar

5. Liu Z, Ishikawa W, Huang X, et al. A buckwheat protein product suppresses 1,2-dimethylhydrazine-induced colon carcinogenesis in rats by reducing cell proliferation. J Nutr. 2001, 131:1850-53.10.1093/jn/131.6.1850Search in Google Scholar

6. Valenzuela A, Sanhueza J, Alonso P, Corbari A. Inhibitory action of conventional food-grade natural antioxidants and of natural antioxidants of new development on the thermal-induced oxidation of cholesterol. Int J Food Sci Nutr. 2004, 55:155-62.10.1080/09637480410001666496Search in Google Scholar

7. Kawa JM, Taylor CG, Przybylski R. Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats. J Agric Food Chem. 2003, 51:7287-91.10.1021/jf0302153Search in Google Scholar

8. Suzuki R, Rylander-Rudqvist T, Ye W, Saji S, Adlercreutz H, Wolk A. Dietary fiber intake and risk of postmenopausal breast cancer defined by estrogen and progesterone receptor status - a prospective cohort study among Swedish women. Int J Cancer. 2008, 122:403-12.10.1002/ijc.23060Search in Google Scholar

9. Holasova M, Fiedlerova V, Smrcinova H, Orsak M, Lachman J, Vavreinova S. Buckwheat - the source of antioxidant activity in functional foods. Food Res Int. 2002, 35:207-11.10.1016/S0963-9969(01)00185-5Search in Google Scholar

10. Đurendic–Brenesel M, Popovic T, Pilija V, et al. Hypolipidemic and antioxidant effects of buckwheat leaf and flower mixture in hyperlipidemic rats. Bosn J Basic Med Sci. 2013, 13:100-8.10.17305/bjbms.2013.2389433392923725506Search in Google Scholar

11. Mišan A, Đurendić-Brenesel M, Milovanović I, et al. Effectiveness of Fagopyri herba feed supplementation in normal and high-fat fed rats. In XV International Feed Technology Symposium Feed-to Food/Cost Feed for Health Joint Workshop. 2012.Search in Google Scholar

12. Landen M, Davidsson P, Gottfries CG, Mansson JE, Blennow K. Reduction of the synaptophysin level but normal levels of glycerophospholipids in the gyrus cinguli in schizophrenia. Schizophr Res. 2002, 55:83-8.10.1016/S0920-9964(01)00197-9Search in Google Scholar

13. Cristopherson SW, Glass RL. Preparation of milk fat methyl esters by alcoholysis in an essentially nonalcoholic solution. J Dairy Sci. 1969, 52:1289-90.10.3168/jds.S0022-0302(69)86739-1Search in Google Scholar

14. Samra RA, Fats and Satietz. In: Montmayeur JP, le Coutre J (ed) Fat Detection: Taste, texture, and Post Ingestive Effects, Boca Raton (FL): CRC Press 2010.10.1201/9781420067767-c15Search in Google Scholar

15. Vento PJ, Swartz ME, Martin LBE, Daniels D. Food intake in laboratory rats provided standard and fenbendazole-supplemented diets. J Am Assoc Lab Anim Sci. 2008, 47:46-50.Search in Google Scholar

16. Tamashiro KLK, Terrillion CE, Hyun J, Koenig JI, Moran TH. Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes. 2009, 58:1116-1125.10.2337/db08-1129267105719188431Search in Google Scholar

17. Chajes V, Joulin V, Clavel-Chapelon F. The fatty acid desaturation index of blood lipids, as biomarker of hepatic stearoyl-CoA desaturase expression, is predictive factor of breast cancer risk. Curr Opin Lipidol. 2011,22:6-10.10.1097/MOL.0b013e328340455220935562Search in Google Scholar

18. Warensjo E, Rosell M, Hellenius ML, Vessby B, De Faire U, Riserus U. Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: links to obesity and insulin resistance. Lipids Health Dis. 2009, 8:37.10.1186/1476-511X-8-37274620819712485Search in Google Scholar

19. Guillou H, Zadravec D, Martin P, Jocobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lip Res. 2010, 19:186-99.10.1016/j.plipres.2009.12.00220018209Search in Google Scholar

20. Brown JM, Rudel LL. Stearoyl-coenzyme A desaturase 1 inhibition and the metabolic syndrome: considerations for future drug discovery. Curr Opin Lipidol. 2010, 21:192-7.10.1097/MOL.0b013e32833854ac309952720216310Search in Google Scholar

21. Liu X, Strable MS, Ntambi JM. Stearoyl CoA Desaturase 1: Role in cellular inflammation and stress. Adv Nutr. 2011,2:15–22.10.3945/an.110.000125304278722211186Search in Google Scholar

22. Vessby B, Gustafsson IB, Tengblad S, Berglund L. Indices of fatty acid desaturase activity in healthy human subjects: effects of different types of dietary fat. Br J Nutr. 2013, 10:871-9.10.1017/S000711451200593423414551Search in Google Scholar

23. Hodson L, Fielding BA. Stearoyl-CoA desaturase: rogue or innocent bystander? Prog Lipid Res. 2013, 52:15-42.10.1016/j.plipres.2012.08.002Search in Google Scholar

24. Hanski E, Rimon G, Levitzki A. Adenylate cyclase activation by the beta-adrenergic receptors as a diffusion-controlled process. Biochemistry. 1979, 18:846–53.10.1021/bi00572a017Search in Google Scholar

25. Djoussé L, Matthan NR, Lichtenstein AH, Gaziano JM. Red blood cell membrane concentration of cis-palmitoleic and cis-vaccenic acids and risk of coronary heart disease. Am J Cardiol. 2012, 110:539-44.10.1016/j.amjcard.2012.04.027Search in Google Scholar

26. Heller A1, Won L, Bubula N, et al. Long-chain fatty acids increase cellular dopamine in an immortalized cell line (MN9D) derived from mouse mesencephalon. Neurosci Lett. 2005, 376:35-9.10.1016/j.neulet.2004.11.021Search in Google Scholar

27. Venalainen T, Schwab U, Agren J, et al. Cross-sectional associations of food consumption with plasma fatty acid composition and estimated desaturase activities in Finnish children Lipids. 2014, 49:467-79.10.1007/s11745-014-3894-7Search in Google Scholar

28. Bourre JM, Dumont O. Dietary oleic acid not used during brain development and in adult in rat, in contrast with sciatic nerve. Neurosci Lett. 2003, 336:180-84.10.1016/S0304-3940(02)01272-7Search in Google Scholar

29. Oishi K, Zheng B, Kuo JF. Inhibition of Na, K-ATPase and sodium pump by protein kinase C regulators sphingosine, lysophosphatidylcholine, and oleic acid. J Biol Chem. 1990, 265:70-5.9(I10.1016/S0021-9258(19)40196-8Search in Google Scholar

30. Natali F, Siculella L, Salvati S, Gnoni G V. Oleic acid is a potent inhibitor of fatty acid and cholesterol synthesis in C6 glioma cells. J Lipid Res. 2007, 48:1966-75.10.1194/jlr.M700051-JLR200Search in Google Scholar

31. Sztriha L, Betz AL, Oleic acid reversibly opens the blood-brain barrier. Brain Res. 1991, 550:257-62.10.1016/0006-8993(91)91326-VSearch in Google Scholar

32. Lee JS, Bok SH, Jeon SM, et al. Antihyperlipidemic effects of buckwheat leaf and flower in rats fed a high-fat diet. Food chem. 2010, 119:235-40.10.1016/j.foodchem.2009.06.014Search in Google Scholar

33. Weisinger HS, Vingrys AJ, Sinclair AJ. Dietary manipulation of long-chain polyunsaturated fatty acids in the retina and brain of guinea pigs. Lipids. 1995, 30:471-3.10.1007/BF025363077637569Search in Google Scholar

34. Ikeda I, Mitsui K, Imaizumi K. Effect of dietary linoleic, alpha-linolenic and arachidonic acids on lipid metabolism, tissue fatty acid composition and eicosanoid production in rats. J Nutr Sci Vitaminol. 1996, 42:541-51.10.3177/jnsv.42.5419089480Search in Google Scholar

35. MacDonald RS, Zhang W, Zhang JP, Sun GY. Brain neutral lipids and phospholipids are modified by long- term feeding of beef tallow vs. corn oil diets. J Nutr. 1996,126:1554-62.10.1093/jn/126.6.15548648428Search in Google Scholar

36. Lui Y, Longmore RB. Dietary sandalwood seed oil modifies fatty acid composition of mouse adipose tissue, brain and liver. Lipids. 1997, 32:965-9.10.1007/s11745-997-0125-x9307938Search in Google Scholar

37. Fernstrom JD. Effects of dietary polyunsaturated fatty acids on neuronal function. Lipids. 1999, 34:161-9.10.1007/s11745-999-0350-310102242Search in Google Scholar

38. Lamptey MS, Walker BL. A possible dietary role for linolenic acid in the development of the young rat. J Nutr. 1976, 106:86-93.10.1093/jn/106.1.86942747Search in Google Scholar

39. Mateos HT, Lewandowski PA, Su XQ, Effects of dietary fish oil replacement with flaxseed oil on tissue fatty acid composition and expression of desaturase and elongase genes. J Sci Food Agric. 2012, 92:418-26. HT, Lewandowski PA, Su XQ10.1002/jsfa.459421834099Search in Google Scholar

40. Ramsden CE, Ringel A, Feldstein AE, et al. Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins Leukot Essent Fatty Acids. 2012, 87:135-41.10.1016/j.plefa.2012.08.004346731922959954Search in Google Scholar

41. DeMar JC Jr, Ma K, Chang L, Bell JM, Rapoport SI. Alpha-Linolenic acid does not contribute appreciably to docosahexaenoic acid within brain phospholipids of adult rats fed a diet enriched in docosahexaenoic acid. Journal Neuroch. 2005, 94:1063–76.10.1111/j.1471-4159.2005.03258.x16092947Search in Google Scholar

42. Igarashi M, DeMar JC, Ma K, Chang L, Bell JM, Rapoport SI. Docosahexaenoic acid synthesis from a-linolenic acid by rat brain is unaffected by dietary n-3 deprivation. J Lipid Res. 2007, 48:1150–8.10.1194/jlr.M600549-JLR20017277380Search in Google Scholar

43. Russo GL. Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol. 2009, 77:937–46.10.1016/j.bcp.2008.10.02019022225Search in Google Scholar

44. Farooqui AA, Ong WY, Horrocks LA. Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev. 2006, 58:591-620.10.1124/pr.58.3.716968951Search in Google Scholar

45. Martins JG. EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr. 2009, 28:525-42.10.1080/07315724.2009.1071978520439549Search in Google Scholar

46. Igarashi M, DeMar JC Jr. Ma K, Chang L, Bell JM, Rapoport SI. Upregulated liver conversion of {alpha}-linolenic acid to docosahexaenoic acid in rats on a 15 week n-3 PUFA-deficient diet. J Lipid Res. 2007, 8:152-64.10.1194/jlr.M600396-JLR20017050905Search in Google Scholar

47. Petersson H, Basu S, Cederholm T, Risérus U. Serum fatty acid composition and indices of stearoyl-CoA desaturase activity are associated with systemic inflammation: longitudinal analyses in middle-aged men. Br J Nutr. 2008, 99:1186-89.10.1017/S000711450787167418062827Search in Google Scholar

48. Brown JE, Kelly MF. Influence of dietary cholesterol and stress on the metabolism of linoleic acid: Δ6-desaturase activity vs. product/precursor ratios. Int J Food Safety. 2008, 1:5-15.10.1504/IJFSNPH.2008.018852Search in Google Scholar

49. Simopoulos AP. Evolutionary aspects of diet: The omega-6/omega-3 ratio and the brain. Mol Neurobiol. 2011, 44:203-15.10.1007/s12035-010-8162-021279554Search in Google Scholar

eISSN:
1820-7448
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Veterinary Medicine