Accès libre

Green ultrasound-assisted three-component click synthesis of novel 1H-1,2,3-triazole carrying benzothiazoles and fluorinated-1,2,4-triazole conjugates and their antimicrobial evaluation

À propos de cet article

Citez

1. S. Pancholia, T. M. Dhameliya, P. Shah, P. S. Jadhavar, J. P. Sridevi, P. Yogeshwari, D. Sriram and A. K. Chakraborti, Benzo[d]thiazol-2-yl(piperazin-1-yl)methanones as new anti-mycobacterial chemotypes: Design, synthesis, biological evaluation and 3D-QSAR studies, Eur. J. Med. Chem. 116 (2016) 187–199; DOI: 10.1016/j.ejmech.2016.03.06Search in Google Scholar

2. P. Shah, T. M. Dhameliya, R. Bansal, M. Nautiyal, D. N. Kommi, P. S. Jadhavar, J. P. Sridevi, P. Yogeeswari, D. Sriram and A. K. Chakraborti, N-arylalkylbenzo[d]thiazole-2-carboxamides as antimycobacterial agents: design, new methods of synthesis and biological evaluation, Med. Chem. Commun. 5 (2014) 1489–1495; DOI: 10.1039/C4MD00224E.10.1039/C4MD00224ESearch in Google Scholar

3. X. Chai, J. Zhang, S. Yu, H. Hu, Y. Zou, Q. Zhao, Z. Dan, D. Zhang and Q. Wu, Design, synthesis, and biological evaluation of novel 1-(1H-1,2,4-triazole-1-yl)-2-(2,4-difluorophenyl)-3-substituted benzylamino-2-propanols, Bioorg. Med. Chem. Lett. 19 (2009) 1811–1814; DOI: 10.1016/j.bmcl.2009.01.048.10.1016/j.bmcl.2009.01.04819231179Search in Google Scholar

4. M. H. Miceli and C. A. Kauffman, Isavuconazole: a new broad-spectrum triazole antifungal agents, Clin. Infect. Dis. 61 (2015) 1558–1565; DOI: 10.1093/cid/civ571.10.1093/cid/civ57126179012Search in Google Scholar

5. Y. Uygun, H. Bayrak and H. Özkan, Synthesis and biological activities of methylenebis-4H-1,2,4-triazole derivatives, Turk. J. Chem. 37 (2013) 812–823; DOI: 10.3906/kim-1212-66.10.3906/kim-1212-66Search in Google Scholar

6. W. Yanwei, X. Kehan, B. Guojing, H. Lei, W. Qiuye, P. Weihua and Y. Shichong, Synthesis and antifungal activity of novel triazole compounds containing piperazine moiety, Molecules19 (2014) 11333–11340; DOI: 10.3390/molecules190811333.10.3390/molecules190811333627178525090121Search in Google Scholar

7. R. P. Sambasiva, C. Kurumurthy, B. Veeraswamy, K. G. Santhosh, Y. Poornachandra, K. C. Ganesh, S. B. Vasamsetti, S. Kotamraju and B. Narsaiah, Synthesis of novel 1,2,3-triazole substituted-N-alkyl/aryl nitrone derivatives, their anti-inflammatory and anticancer activity, Eur. J. Med. Chem. 80 (2014) 184–191; DOI: 10.1016/j.ejmech.2014.04.052.10.1016/j.ejmech.2014.04.05224780595Search in Google Scholar

8. H. S. Mubarak, D. S. Dnyaneshwar, N. Laxman, S. Dhiman, http://pubs.rsc.org/en/results?searchtext=Author%3ADhiman%20SarkarA. K. K. Firoz, N. S. Jaiprakash and B. S. Bapurao, 1,2,3-Triazole derivatives as antitubercular agents: synthesis, biological evaluation and molecular docking study, Med. Chem. Commun. 6 (2015) 1104–1116; DOI: 10.1039/C5MD00057B.10.1039/C5MD00057BSearch in Google Scholar

9. S.-Y. Zhang, D.-J. Fu, X.-X. Yue, Y.-Ch. Liu, J. Song, H.-H. Sun, H.-M. Liu and Y.-B. Zhang, Design, synthesis and structure-activity relationships of novel chalcone-1,2,3-triazole-azole derivatives as antiproliferative agents, Molecules21 (2016) 653–665; DOI: 10.3390/molecules21050665.10.3390/molecules21050665627324327213319Search in Google Scholar

10. L.-Y. Ma, L.-P. Pang, B. Wang, M. Zhang, B. Hu, D.-Q. Xue, K.-P. Shao, B.-L. Zhang, Y. Liu, E. Zhang and H.-M. Liu, Design and synthesis of novel 1,2,3-triazole-pyrimidine hybrids as potential anticancer agents, Eur. J. Med. Chem. 86 (2014) 368–380; DOI: 10.1016/j.ejmech.2014.08.010.10.1016/j.ejmech.2014.08.01025180925Search in Google Scholar

11. N. R. Penthala, L. Madhukuri, S. Thakkar, N. R. Madadi, G. Lamture, R. L. Eoff and P. A. Crooks, Synthesis and anti-cancer screening of novel heterocyclic-(2H)-1,2,3-triazoles as potential anticancer agents, Med. Chem. Commun. 6 (2015) 1535–1543; DOI: 10.1039/C5MD00219B.10.1039/C5MD00219B482144327066215Search in Google Scholar

12. K. T. Petrova, T. M. Potewar, P. Correia-da-Silva, M. T. Barros, R. C. Calhelha, A. Ćiric, M. Soković and C. F. R. Ferreira, Antimicrobial and cytotoxic activities of 1,2,3-triazole-sucrose derivatives, Carb. Res. 417 (2015) 66–71; DOI: 10.1016/j.carres.2015.09.003.10.1016/j.carres.2015.09.00326432609Search in Google Scholar

13. N. Li, D. Wang, J. Li, W. Shi, Ch. Li and B. Chen, One-pot synthesis of 4,5-disubstituted 1,2,3-(NH)-triazoles using terminal acetylenes, carbon monoxide, aryliodides, and sodium azide, Tetrahedron Lett. 52 (2011) 980–982; DOI: 10.1016/j.tetlet.2010.12.053.10.1016/j.tetlet.2010.12.053Search in Google Scholar

14. J. T. Fletcher and J. E. Reilly, Fast dye salts provide fast access to azidoarene synthons in multi-step one-pot tandem click transformations, Tetrahedron Lett. 52 (2011) 5512–5515; DOI: 10.1016/j.tetlet.2011.08.069.10.1016/j.tetlet.2011.08.069328524222368306Search in Google Scholar

15. K. Barral, A. D. Moorhouse and J. E. Moses, Efficient conversion of aromatic amines into azides: a one-pot synthesis of triazole linkages, Org. Lett. 9 (2007) 1809–1811; DOI: 10.1021/ol070527h.10.1021/ol070527h17391043Search in Google Scholar

16. G. Zbancioc, I. I. Mangalagiu and C. Moldoveanu, Ultrasound assisted synthesis of imidazolium salts: an efficient way to ionic liquids, Ultrason. Sonochem. 23 (2015) 376–384; DOI: 10.1016/j.ultsonch.2014.10.028.10.1016/j.ultsonch.2014.10.02825465880Search in Google Scholar

17. G. Ameta, P. A. Kumar, C. Ameta, R. Ameta and P. B. Punjabi, Sonochemical synthesis and characterization of imidazolium based ionic liquids: A green pathway, J. Mol. Liq. 211 (2015) 934–937; DOI: 10.1016/j.molliq.2015.08.009.10.1016/j.molliq.2015.08.009Search in Google Scholar

18. N. Rezki, A green ultrasound synthesis, characterization and antibacterial evaluation of 1,4-disubstituted 1,2,3-triazoles tethering bioactive benzothiazole nucleus, Molecules21 (2016) 505–516; DOI: 10.3390/molecules21040505.10.3390/molecules21040505627357227096862Search in Google Scholar

19. M. R. Aouad, M. Messali, N. Rezki, A. A. Ali and A. Lesimple, Synthesis and characterization of some novel 1,2,4-triazoles, 1,3,4-thiadiazoles and Schiff bases incorporating imidazole moiety as potential antimicrobial agents, Acta Pharm. 65 (2015) 117–132; DOI: 10.1515/acph-2015-0011.10.1515/acph-2015-001126011929Search in Google Scholar

20. N. Rezki, A. M. Al-Yahyawi, S. K. Bardaweel, F. F. Al-Blewi and M. R. Aouad, Synthesis of novel 2,5-disubstituted-1,3,4-thiadiazoles clubbed 1,2,4-triazole, 1,3,4-thiadiazole, 1,3,4-oxadiazole and/or Schiff base as potential antimicrobial and antiproliferative agents, Molecules20 (2015) 16048–16067; DOI: 10.3390/molecules200916048.10.3390/molecules200916048633188026364633Search in Google Scholar

21. D. Kumar, D. N. Kommi, N. Bollineni, A. R. Patel and A. K. Chakraborti, Catalytic procedures for multicomponent synthesis of imidazoles: selectivity control during the competitive formation of tri- and tetrasubstituted imidazoles, Green Chem. 14 (2012) 2038–2049; DOI: 10.1039/C2GC35277J.10.1039/c2gc35277jSearch in Google Scholar

22. D. Kumar, M. Sonawane, B. Pujala, V. K. Jain, S. Bhagat and A. K. Chakraborti, Supported protic acid-catalyzed synthesis of 2,3-disubstituted thiazolidin-4-ones: enhancement of the catalytic potential of protic acid by adsorption on solid supports, Green Chem. 15 (2013) 2872–2884; DOI: 10.1039/C3GC41218K.10.1039/c3gc41218kSearch in Google Scholar

23. S. R. Roy, P. S. Jadhavar, K. Seth, K. K. Sharma and A. K. Chakraborti, Organocatalytic application of ionic liquids: [bmim][MeSO4] as a recyclable organocatalyst in the multicomponent reaction for the preparation of dihydropyrimidinones and -thiones, Synthesis14 (2011) 2261–2267; DOI: 10.1055/s-0030-1260067.10.1055/s-0030-1260067Search in Google Scholar

24. European Committee for Antimicrobial Susceptibility Testing (EUCAST), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution, Clin. Microb. Infect. 6 (2000) 509–515; DOI: 10.1046/j.1469-0691.2000.00142.x.10.1046/j.1469-0691.2000.00142.x11168187Search in Google Scholar

25. National Committee for Clinical Laboratory Standards, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard M7-A5, 5th ed., NCCLS, Wayne (PA) 2000.Search in Google Scholar

26. J. M. Kane, M. W. Dudley, S. M. Sorensen and F. P. Miller, 2,4-Dihydro-3H-1,2,4-triazole-3-thiones as potential antidepressant agents, J. Med. Chem. 31 (1988) 1253–1258; DOI: 10.1021/jm00401a031.10.1021/jm00401a0313373495Search in Google Scholar

27. J. M. Kane, C. R. Dalton, M. A. Staeger and E. W. Huber, Long-range fluorine-proton coupling in 1,2,4-triazole derivatives, J. Heterocyclic Chem. 32 (1995) 183–187; DOI: 10.1002/jhet.5570320130.10.1002/jhet.5570320130Search in Google Scholar

28. T. Jianying, S. Yanxia, L. Xinghai, S. Nabo and L. Baoju, Synthesis and fungicidal activity of 1,2,4-triazole derivatives containing 2-fluorophenyl moiety, Chin. J. Org. Chem. 32 (2012) 2373–2377; DOI: 10.6023/cjoc201207020.10.6023/cjoc201207020Search in Google Scholar

29. A. H. Groll and J. Lumb, New developments in invasive fungal disease, Future Microbiol. 7 (2012) 179–184; DOI: 10.2217/fmb.11.154.10.2217/fmb.11.15422324986Search in Google Scholar

30. A. Kleeman, J. Engel, B. Kutscher and D. Reichert, Pharmaceutical Substances, 3rd ed., Thieme, Stuttgart-New York 1999, pp. 2286.Search in Google Scholar

eISSN:
1846-9558
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Pharmacy, other