1. bookVolume 65 (2015): Edition 2 (June 2015)
Détails du magazine
Première parution
28 Feb 2007
4 fois par an
Accès libre

Virosome, a hybrid vehicle for efficient and safe drug delivery and its emerging application in cancer treatment

Publié en ligne: 23 May 2015
Volume & Edition: Volume 65 (2015) - Edition 2 (June 2015)
Pages: 105 - 116
Accepté: 09 Feb 2015
Détails du magazine
Première parution
28 Feb 2007
4 fois par an

1. I. M. Verma and M. D. Weitzman, Gene therapy: twenty-first century medicine, Annu. Rev. Biochem. 74 (2005) 711-738; DOI: 10.1146/annurev.biochem.74.050304.091637.10.1146/annurev.biochem.74.050304.091637Search in Google Scholar

2. C. Baum, A. Schamba ch, J. Bohne and M. Galla, Retrovirus vectors: toward the plentivirus? Mol. Ther. 13 (2006) 1050-1063; DOI: 10.1016/j.ymthe.2006. in Google Scholar

3. C. Li, D. E. Bowles, T. van Dyke and R. J. Samulski, Adeno-associated virus vectors: potential applications for cancer gene therapy, Cancer Gene Ther. 12 (2005) 913-925; DOI: 10.1038/sj.cgt.7700876.10.1038/sj.cgt.7700876Search in Google Scholar

4. L. S. Young, P. F. Se arle, D. Onion and V. Mautner, Viral gene therapy strategies: from basic science to clinical application, J. Pathol. 208 (2006) 299-318; DOI: 10.1002/path.1896.10.1002/path.1896Search in Google Scholar

5. R. Wattiaux, N. Lauren t, S. Wa_ iaux-De Coninck and M. Jadot, Endosomes, lysosomes: their implication in gene transfer, Adv. Drug Deliv. Rev. 41 (2000) 201-208.10.1016/S0169-409X(99)00066-6Search in Google Scholar

6. M. S. Al-Dosari and X. Gao, Nonviral gene delivery: principle, limitations, and recent progress, AAPS J. 11 (2009) 671-681; DOI: 10.1208/s12248-009-9143-y.10.1208/s12248-009-9143-y278207719834816Search in Google Scholar

7. M. Morille, C. Passirani , A. Vonarbourg, A. Clavreul and J. P. Benoit, Progress in developing cationic vectors for non-viral systemic gene therapy against cancer, Biomaterials 29 (2008) 3477-3496; DOI: 10.1016/j.biomaterials.2008. in Google Scholar

8. Y. Kaneda and Y. Tabata, Non-viral vectors for cancer therapy, Cancer Sci. 97 (2006) 348-354; DOI: 10.1111/j.1349-7006.2006.00189.x.10.1111/j.1349-7006.2006.00189.x16630130Search in Google Scholar

9. J. Zabner, A. J. Fasbender , T. Moninger, K. A. Poellinger and M. J. Welsh, Cellular and molecular barriers to gene transfer by a cationic lipid, J. Biol. Chem. 270 (1995) 18997-9007.10.1074/jbc.270.32.189977642560Search in Google Scholar

10. I. A. Schaap, F. Eghiaian, A. des Georges and C. Veigel, Effect of envelope proteins on the mechanical properties of influenza virus, J. Biol. Chem. 287 (2012) 41078-41088; DOI: 10.1074/jbc. M112.412726.10.1074/jbcSearch in Google Scholar

11. C. Moser, M. Muller, M. D. Kaeser, U. Weydemann and M. Amacker, Influenza virosomes as vaccine adjuvant and carrier system, Expert Rev. Vaccines 12 (2013) 779-791; DOI: 10.1586/14760584.2013.811195.10.1586/14760584.2013.811195Search in Google Scholar

12. D. Koppers-Lalic, M. M. Hoge nboom, J. M. Middeldorp and D. M. Pegtel, Virus-modified exosomes for targeted RNA delivery; a new approach in nanomedicine, Adv. Drug Deliv. Rev. 65 (2013) 348-356; DOI: 10.1016/j.addr.2012. in Google Scholar

13. J. D. Almeida, D. C. Edwards, C. M. Brand and T. D. Heath, Formation of virosomes from influenza subunits and liposomes, Lancet 2 (1975) 899-901. 10.1016/S0140-6736(75)92130-3Search in Google Scholar

14. R. K. Scheule, Novel preparati on of functional Sindbis virosomes, Biochemistry 25 (1986) 4223-4232.10.1021/bi00363a009Search in Google Scholar

15. W. A. Petri, Jr. and R. R. Wagn er, Reconstitution into liposomes of the glycoprotein of vesicular stomatitis virus by detergent dialysis, J. Biol. Chem. 254 (1979) 4313-4316.10.1016/S0021-9258(17)30004-2Search in Google Scholar

16. K. Metsikko, G. van Meer and K. Simons, Reconstitution of the fusogenic activity of vesicular stomatitis virus, EMBO J. 5 (1986) 3429-3435.10.1002/j.1460-2075.1986.tb04665.xSearch in Google Scholar

17. A. Helenius, E. Fries and J. Kart enbeck, Reconstitution of Semliki forest virus membrane, J. Cell Biol. 75 (1977) 866-880.10.1083/jcb.75.3.866Search in Google Scholar

18. A. Helenius, M. Sarvas and K. Simo ns, Asymmetric and symmetric membrane reconstitution by detergent elimination: Studies with Semliki-Forest-virus spike glycoprotein and penicillinase from the membrane of Bacillus licheniformis, Eur. J. Biochem. 116 (1981) 27-35.Search in Google Scholar

19. T. Uchida, J. Kim, M. Yamaizumi, Y. Miyake and Y. Okada, Reconstitution of lipid vesicles associated with HVJ (Sendai virus) sikes. Purification and some properties of vesicles containing nontoxic fragment A of diphtheria toxin, J. Cell Biol. 80 (1979) 10-20.10.1083/jcb.80.1.10Search in Google Scholar

20. S. Bagai, A. Puri, R. Blumenthal and D. P. Sarkar, Hemagglutinin-neuraminidase enhances F protein-mediated membrane fusion of reconstituted Sendai virus envelopes with cells, J. Virol. 67 (1993) 3312-3318.10.1128/jvi.67.6.3312-3318.1993Search in Google Scholar

21. A. Vainstein, M. Hershkovitz, S. Isra el, S. Rabin and A. Loyter, A new method for reconstitution of highly fusogenic Sendai virus envelopes, Biochim. Biophys. Acta 773 (1984) 181-188.10.1016/0005-2736(84)90081-6Search in Google Scholar

22. A. Jamali, M. Holtrop, A. de Haan, H. Hashemi, M. Shenagari, A. Memarnejadian, F. Roohvand, F. Sabahi, M. T. Kheiri and A. Huckriede, Cationic influenza virosomes as an adjuvanted delivery system for CTL induction by DNA vaccination, Immunol. Lett . 148 (2012) 77-82; DOI: 10.1016/j.imlet. 2012.08.006.Search in Google Scholar

23. S. G. Reed, S. Bertholet, R. N. Coler a nd M. Friede, New horizons in adjuvants for vaccine development, Trends Immunol. 30 (2009) 23-32; DOI: 10.1016/j.it.2008. in Google Scholar

24. J. J. Skehel and D. C. Wiley, Receptor b inding and membrane fusion in virus entry: the influenza hemagglutinin, Annu. Rev. Biochem. 69 (2000) 531-569; DOI: 10.1146/annurev.biochem.69.1.531.10.1146/annurev.biochem.69.1.53110966468Search in Google Scholar

25. M. Ohuchi, N. Asaoka, T. Sakai and R. Ohu chi, Roles of neuraminidase in the initial stage of influenza virus infection, Microbes Infect. 8 (2006) 1287-1293; DOI: 10.1016/j.micinf.2005. in Google Scholar

26. R. Wagner, M. Matrosovich and H. D. Klenk , Functional balance between haemagglutinin and neuraminidase in influenza virus infections, Rev. Med. Virol. 12 (2002) 159-166; DOI: 10.1002/ rmv.352.10.1002/rmv.35211987141Search in Google Scholar

27. T. Nakajima, Novel gene transfer systems: i ntelligent gene transfer vectors for gene medicines, Curr. Top. Med. Chem. 12 (2012) 1594-1602.Search in Google Scholar

28. T. Stegmann, H. W. Morselt, F. P. Booy, J. F . van Breemen, G. Scherphof and J. Wilschut, Functional reconstitution of influenza virus envelopes, EMBO J. 6 (1987) 2651-2659.10.1002/j.1460-2075.1987.tb02556.xSearch in Google Scholar

29. M. G. Cusi, Applications of influenza virosom es as a delivery system, Hum. Vaccin. 2 (2006) 1-7.10.4161/hv.2.1.249417012895Search in Google Scholar

30. E. Soussan, S. Cassel, M. Blanzat and I. Rico- La_ es, Drug delivery by so_ ma_ er: matrix and vesicular carriers, Angew. Chem. Int. Ed. Engl. 48 (2009) 274-288; DOI: 10.1002/anie.200802453.10.1002/anie.20080245319072808Search in Google Scholar

31. G. V. Radha, T. S. Rani and B. Sarvani, A revie w on proniosomal drug delivery system for targeted drug action, J. Basic Clin. Pharm. 4 (2013) 42-48; DOI: 10.4103/0976-0105.113609.10.4103/0976-0105.113609397926324808669Search in Google Scholar

32. H. I. Chang and M. K. Yeh, Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy, Int. J. Nanomedicine 7 (2012) 49-60; DOI: 10.2147/IJ N.S26766.Search in Google Scholar

33. A. K. Dey and I. K. Srivastava, Novel adjuvants a nd delivery systems for enhancing immune responses induced by immunogens, Expert Rev. Vaccines 10 (2011) 227-251; DOI: 10.1586/erv. in Google Scholar

34. M. L. De Temmerman, J. Rejman, J. Demeester, D. J. Irvine, B. Gander and S. C. De Smedt, Particulate vaccines: on the quest for optimal delivery and immune response, Drug Discov. Today 16 (2011) 569-582; DOI: 10.1016/j.drudis.2011.04.006. 10.1016/j.drudis.2011.04.00621570475Search in Google Scholar

35. A. Huckriede, L. Bungener, T. Stegmann, T. Daemen, J. Medema, A. M. Palache and J. Wilschut, The virosome concept for influenza vaccines, Vaccine 23 (Suppl. 1) (2005) S26-S38; DOI: 10.1016/j. vaccine.2005.04.026.Search in Google Scholar

36. A. M. Harandi and D. Medaglini, Mucosal adjuvants, C urr. HIV Res. 8 (2010) 330-335.10.2174/157016210791208695Search in Google Scholar

37. I. Jabbal-Gill, Nasal vaccine innovation, J. Drug Tar get. 18 (2010) 771-786; DOI: 10.3109/ 1061186X.2010.523790.10.3109/1061186X.2010.523790Search in Google Scholar

38. S. Beg, A. Samad, I. Nazish, R. Sultana, M. Rahman, M. Z. Ahmad and M. Akbar, Colloidal drug delivery systems in vaccine delivery, Curr. Drug Targets 14 (2013) 123-137.10.2174/138945013804806523Search in Google Scholar

39. S. M. Moghimi and J. Szebeni, Stealth liposomes and lon g circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties, Prog. Lipid Res. 42 (2003) 463-478.Search in Google Scholar

40. E. Waelti, N. Wegmann, R. Schwaninger, A. Wetterwald, C. Wingenfeld, B. Rothen-Rutishauser and C. D. Gimmi, Targeting her-2/neu with antirat Neu virosomes for cancer therapy, Cancer Res. 62 (2002) 437-444.Search in Google Scholar

41. E. Mastrobattista, P. Schoen, J. Wilschut, D. J. Crommeli n and G. Storm, Targeting influenza virosomes to ovarian carcinoma cells, FEBS Lett. 509 (2001) 71-76.10.1016/S0014-5793(01)03112-XSearch in Google Scholar

42. J. Liu, J. Wu, B. Wang, S. Zeng, F. Qi, C. Lu, Y. Kimura a nd B. Liu, Oral vaccination with a liposomeencapsulated influenza DNA vaccine protects mice against respiratory challenge infection, J. Med. Virol. 86 (2014) 886-894; DOI: 10.1002/jmv.23768.10.1002/jmv.23768Search in Google Scholar

43. J. de Jonge, J. M. Leenhouts, M. Holtrop, P. Schoen, P. Sch errer, P. R. Cullis, J. Wilschut and A. Huckriede, Cellular gene transfer mediated by influenza virosomes with encapsulated plasmid DNA, Biochem. J. 405 (2007) 41-49; DOI: 10.1042/BJ20061756.10.1042/BJ20061756Search in Google Scholar

44. J. de Jonge, M. Holtrop, J. Wilschut and A. Huckriede, Recon stituted influenza virus envelopes as an efficient carrier system for cellular delivery of small-interfering RNAs, Gene Ther. 13 (2006) 400-411; DOI: 10.1038/sj.gt.3302673.10.1038/sj.gt.3302673Search in Google Scholar

45. L. Bungener, K. Serre, L. Bij l, L. Leserman, J. Wilschut, T. Daemen and P. Machy, Virosome-mediated delivery of protein antigens to dendritic cells, Vaccine 20 (2002) 2287-2295.10.1016/S0264-410X(02)00103-2Search in Google Scholar

46. P. Schoen, A. Chonn, P. R. Cullis, J. Wilschut and P. Scherrer , Gene transfer mediated by fusion protein hemagglutinin reconstituted in cationic lipid vesicles, Gene Ther. 6 (1999) 823-832; DOI: 10.1038/sj.gt.3300919.10.1038/sj.gt.330091910505107Search in Google Scholar

47. R. Bron, A. Ortiz and J. Wilschut, Cellular cytoplasmic delive ry of a polypeptide toxin by reconstituted influenza virus envelopes (virosomes), Biochemistry 33 (1994) 9110-9117.10.1021/bi00197a0138049214Search in Google Scholar

48. L. Bungener, A. Huckriede, A. de Mare, J. de Vries-Idema, J. Wil schut and T. Daemen, Virosomemediated delivery of protein antigens in vivo: efficient induction of class I MHC-restricted cytotoxic T lymphocyte activity, Vaccine 23 (2005) 1232-1241; DOI: 10.1016/j.vaccine.2004. in Google Scholar

49. A. Arkema, A. Huckriede, P. Schoen, J. Wilschut and T. Daemen, In duction of cytotoxic T lymphocyte activity by fusion-active peptide-containing virosomes, Vaccine 18 (2000) 1327-1333.10.1016/S0264-410X(99)00404-1Search in Google Scholar

50. Y. Kaneda, Virosomes: evolution of the liposome as a targeted drug delivery system, Adv. Drug Deliv. Rev. 43 (2000) 197-205.Search in Google Scholar

51. N. Nakamura, D. A. Hart, C. B. Frank, L. L. Marchuk, N. G. Shrive, N. Ota, K. Taira, H. Yoshikawa and Y. Kaneda, Efficient transfer of intact oligonucleotides into the nucleus of ligament scar fibroblasts by HVJ-cationic liposomes is correlated with effective antisense gene inhibition, J. Biochem. 129 (2001) 755-759.10.1093/oxfordjournals.jbchem.a00291611328598Search in Google Scholar

52. Y. Krishnamachari, S. M. Geary, C. D. Lemke, and A. K. Salem, Nanopa rticle delivery systems in cancer vaccines, Pharm. Res. 28 (2011) 215-236; DOI: 10.1007/s11095-010-0241-4.10.1007/s11095-010-0241-4355924320721603Search in Google Scholar

53. T. Stegmann, T. Kamphuis, T. Meij erhof, E. Goud, A. de Haan and J. Wi lschut, Lipopeptide-adjuvanted respiratory syncytial virus virosomes: A safe and immunogenic non-replicating vaccine formulation, Vaccine 28 (2010) 5543-5550; DOI: 10.1016/j.vaccine.2010.06.041. 10.1016/j.vaccine.2010.06.04120600502Search in Google Scholar

54. M. Shafique, J. Wilschut and A. de Haan, Induction of mucosal and syst emic immunity against respiratory syncytial virus by inactivated virus supplemented with TLR9 and NOD2 ligands, Vaccine 30 (2012) 597-606; DOI: 10.1016/j.vaccine.2011. in Google Scholar

55. R. J. Cox, G. Pedersen, A. S. Madhun, S. Svindland, M. Saevik, L. Break well, K. Hoschler, M. Willemsen, L. Campitelli, J. K. Nostbakken, G. J. Weverling, J. Klap, K. C. McCullough, M. Zambon, R. Kompier and H. Sjursen, Evaluation of a virosomal H5N1 vaccine formulated with Matrix M adjuvant in a phase I clinical trial, Vaccine 29 (2011) 8049-8059; DOI: 10.1016/j.vaccine.2011. in Google Scholar

56. M. D. Joshi, W. J. Unger, G. Storm, Y. van Kooyk and E. Mastrobattista, Targeting tumor antigens to dendritic cells using particulate carriers, J. Control. Release 161 (2012) 25-37; DOI: 10.1016/j.jconrel. 2012.05.010.Search in Google Scholar

57. D. Felnerova, J. F. Viret, R. Gluck and C. Moser, Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs, Curr. Opin. Biotech. 15 (2004) 518-529; DOI: 10.1016/j.copbio. 2004.10.005.Search in Google Scholar

58. G. Leroux-Roels, Unmet needs in modern vaccinology: adjuvants to improve t he immune response, Vaccine 28 (Suppl. 3) (2010) C25-C36; DOI: 10.1016/j.vaccine.2010. in Google Scholar

59. P. Nordly, H. B. Madsen, H. M. Nielsen and C. Foged, Status and future pros pects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators, Expert Opin. Drug Deliv. 6 (2009) 657-672; DOI: 10.1517/17425240903018863.10.1517/1742524090301886319538037Search in Google Scholar

60. P. G. Cech, T. Aebi, M. S. Abdallah, M. Mpina, E. B. Machunda, N. Westerfeld , S. A. Stoffel, R. Zurbriggen, G. Pluschke, M. Tanner, C. Daubenberger, B. Genton and S. Abdulla, Virosome-formulated Plasmodium falciparum AMA-1 & CSP derived peptides as malaria vaccine: Randomized phase 1b trial in semi-immune adults & children, PLoS One 6 (2011) e22273; DOI: 10.1371/journal. pone.0022273.Search in Google Scholar

61. A. Cassone and A. Casadevall, Recent progress in vaccines against fungal dis eases, Curr. Opin. Microbiol. 15 (2012) 427-433; DOI: 10.1016/j.mib.2012. in Google Scholar

62. J. Torresi, D. Johnson and H. Wedemeyer, Progress in the development of prev entive and therapeutic vaccines for hepatitis C virus, J. Hepatol. 54 (2011) 1273-1285; DOI: 10.1016/j.jhep.2010. in Google Scholar

63. I. Naldi, M. Taranta, L. Gherardini, G. Pelosi, F. Viglione, S. Grimaldi, L. P ani and C. Cinti, Novel epigenetic target therapy for prostate cancer: a preclinical study, PLoS One 9 (2014) e98101; DOI: 10.1371/journal.pone.0098101.10.1371/journal.pone.0098101403113724851905Search in Google Scholar

64. R. M. Roy and B. S. Klein, Dendritic cells in antifungal immunity and vaccine design, Cell Host Microbe 11 (2012) 436-446; DOI: 10.1016/j.chom.2012. in Google Scholar

65. A. Huckriede, L. Bungener, W. ter Veer, M. Holtrop, T. Daemen, A. M. Palache and J. Wilschut, Influenza virosomes: combining optimal presentation of hemagglutinin with immunopotentiating activity, Vaccine 21 (2003) 925-931.Search in Google Scholar

66. E. Nardin, The past decade in malaria synthetic peptide vaccine clinical trials, Hum. Vaccin. 6 (2010) 27-38.10.4161/hv.6.1.960120173408Search in Google Scholar

67. J. Wilschut, Influenza vaccines: the virosome concept, Immunol. Lett. 122 (2009) 118-121; DOI: 10.1016/j.imlet.2008. in Google Scholar

68. C. Hatz, R. van der Ploeg, B. R. Beck, G. Frosner, M. Hunt and C. Herzog, Successf ul memory response following a booster dose with a virosome-formulated hepatitis a vaccine delayed up to 11 years, Clin. Vaccine Immunol. 18 (2011) 885-887; DOI: 10.1128/CVI.00358-10.10.1128/CVI.00358-10312252821411599Search in Google Scholar

69. W. Z. Zhou, D. S. Hoon, S. K. Huang, S. Fujii, K. Hashimoto, R. Morishita, and Y. K aneda, RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization, Hum. Gene Ther. 10 (1999) 2719-2724; DOI: 10.1089/10430349950016762.10.1089/1043034995001676210566900Search in Google Scholar

70. M. G. Cusi, M. T. Del Vecchio, C. Terrosi, G. G. Savellini, G. Di Genova, M. La Plac a, F. Fallarino, C. Moser, C. Cardone, G. Giorgi, G. Francini and P. Correale, Immune-reconstituted influenza virosome containing CD40L gene enhances the immunological and protective activity of a carcinoembryonic antigen anticancer vaccine, J. Immunol. 174 (2005) 7210-7216. 10.4049/jimmunol.174.11.721015905566Search in Google Scholar

71. P. Correale, M. T. Del Vecchio, T. Renieri, G. Di Genova, M. La Placa, C. Remondo, G. G. Savellini, C. Terrosi, R. Zurbriggen, M. Amacker, G. Francini and M. G. Cusi, Anti-angiogenetic effects of immune-reconstituted influenza virosomes assembled with parathyroid hormone-related protein derived peptide vaccine, Cancer Lett. 263 (2008) 291-301; DOI: 10.1016/j.canlet.2008. in Google Scholar

72. U. Wiedermann, C. Wiltschke, J. Jasinska, M. Kundi, R. Zurbriggen, E. Garner-Spitzer, R. Bartsch, G. Steger, H. Pehamberger, O. Scheiner and C. C. Zielinski, A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study, Breast Cancer Res. Treat. 119 (2010) 673-683.10.1007/s10549-009-0666-920092022Search in Google Scholar

73. R. Schwaninger, E. Waelti, P. Zajac, A. Wetterwald, D. Mueller and C. D. Gimmi, Virosom es as new carrier system for cancer vaccines, Cancer Immunol. Immunother. 53 (2004) 1005-17; DOI: 10.1007/ s00262-004-0545-5.10.1007/s00262-004-0545-515185010Search in Google Scholar

74. L. Bungener, A. de Mare, J. de Vries-Idema, P. Sehr, A. van der Zee, J. Wilschut and T. Daemen, A virosomal immunization strategy against cervical cancer and pre-malignant cervical disease, Antivir. Ther. 11 (2006) 717-727.10.1177/135965350601100616Search in Google Scholar

75. M. Walczak, A. de Mare, A. Riezebos-Brilman, J. Regts, B. N. Hoogeboom, J. T. Visser, M. Fiedler, P. Jansen-Durr, A. G. van der Zee, H. W. Nij man, J. Wilschut and T. Daemen, Heterologous primeboost immunizations with a virosomal and an alphavirus replicon vaccine, Mol. Pharm. 8 (2011) 65-77; DOI: 10.1021/mp1002043.10.1021/mp100204320825215Search in Google Scholar

76. M. Adamina, R. Schumacher, P. Zajac, W. P. Weber, R. Rosenthal, C. Groeper, C. Feder, R. Z urbriggen, M. Amacker, G. C. Spagnoli, D. Oertli and M. Heberer, Advanced liposomal vectors as cancer vaccines in melanoma immunotherapy, J. Liposome Res. 16 (2006) 195-204; DOI: 10.1080/ 08982100600848546.10.1080/0898210060084854616952874Search in Google Scholar

77. R. Schumacher, M. Amacker, D. Neuhaus, R. Rosenthal, C. Groeper, M. Heberer, G. C. Spagnoli , R. Zurbriggen and M. Adamina, Efficient induction of tumoricidal cytotoxic T lymphocytes by HLA-A0201 restricted, melanoma associated, L(27)Melan-A/MART-1(26-35) peptide encapsulated into virosomes in vitro, Vaccine 23 (2005) 5572-5582; DOI: 10.1016/j.vaccine.2005. in Google Scholar

78. M. K. Zakaria, I. Khan, P. Mani, P. Chattopadhyay, D. P. Sarkar and S. Sinha, Combination of hepatocyte specific delivery and transformation dependent expression of shRNA inducing transcriptional gene silencing of c-Myc promoter in hepatocellular carcinoma cells, BMC Cancer 14 (2014) 582; DOI: 10.1186/1471-2407-14-582.10.1186/1471-2407-14-582415391125108398Search in Google Scholar

79. Y. Nishimura, H. Mieda, J. Ishii, C. Ogino, T. Fujiwara and A. Kondo, Targeting cancer cell- specific RNA interference by siRNA delivery using a complex carrier of affibody-displaying bio-nanocapsules and liposomes, J. Nanobiotechnol. 11 (2013) 19; DOI: 10.1186/1477-3155-11-19.10.1186/1477-3155-11-19369938023800313Search in Google Scholar

80. C. Cinti, M. Taranta, I. Naldi and S. Grimaldi, Newly engineered magnetic erythrocytes for s ustained and targeted delivery of anti-cancer therapeutic compounds, PLoS One 6 (2011) e17132; DOI: 10.1371/journal.pone.0017132.10.1371/journal.pone.0017132304415421373641Search in Google Scholar

81. M. Kurooka and Y. Kaneda, Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells, Cancer Res. 67 (2007) 227-236; DOI: 10.1158/ 0008-5472.CAN-06-1615.10.1158/0008-5472.CAN-06-161517210703Search in Google Scholar

82. A. Fujihara, M. Kurooka, T. Miki and Y. Kaneda, Intratumoral injection of inactivated Sendai virus particles elicits strong antitumor activity by enhancing local CXCL10 expression and systemic NK cell activation, Cancer Immunol. Immunother. 57 (2008) 73-84; DOI: 10.1007/s00262-007-0351-y.10.1007/s00262-007-0351-y17602226Search in Google Scholar

83. M. Tanaka, T. Shimbo, Y. Kikuchi, M. Matsuda and Y. Kaneda, Sterile alpha motif containing dom ain 9 is involved in death signaling of malignant glioma treated with inactivated Sendai virus particle (HVJ-E) or type I interferon, Int. J. Cancer. 126 (2010) 1982-1991; DOI: 10.1002/ij c.24965.10.1002/ijc.2496519830690Search in Google Scholar

84. Y. Kawaguchi, Y. Miyamoto, T. Inoue and Y. Kaneda, Efficient eradication of hormone-resistant h uman prostate cancers by inactivated Sendai virus particle, Int. J. Cancer 124 (2009) 2478-2487; DOI: 10.1002/ij c.24234.10.1002/ijc.2423419173282Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo