Accès libre

The role of phosphodiesterase 4B in IL-8/LTB4-induced human neutrophil chemotaxis evaluated with a phosphodiesterase 4B inhibitor

À propos de cet article

Citez

1. D. H. Maurice, H. Ke, F. Ahmad, Y. Wang, J. Chung and V. C. Manganiello, Advances in targeting cyclic nucleotide phosphodiesterases, Nat. Rev. Drug Discov. 13 (2014) 290-314; DOI: 10.1038/ nrd4228.10.1038/nrd4228Search in Google Scholar

2. S. H. Francis, M. A. Blount and J. D. Corbin, Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions, Physiol. Rev. 91 (2011) 651-690; DOI: 10.1152/ physrev.00030.2010.Search in Google Scholar

3. C. D. Manning, M. Burman, S. B. Christensen, L. B. Cieslinski, D. M. Essayan, M. Grous, T. J. Torphy and M. S. Barnette, Suppression of human inflammatory cell function by subtype-selective PDE4 inhibitors correlates with inhibition of PDE4A and PDE4B, Br. J. Pharmacol. 128 (1999) 1393-1398; DOI: 10.1038/sj.bjp.0702911.10.1038/sj.bjp.0702911Search in Google Scholar

4. D. Peter, S. L. Jin, M. Conti, A. Hatzelmann and C. Zitt, Differential expression and function of phosphodiesterase 4 (PDE4) subtypes in human primary CD4+ T cells: predominant role of PDE4D, J. Immunol. 178 (2007) 4820-4831; DOI: 10.4049/jimmunol.178.8.4820.10.4049/jimmunol.178.8.4820Search in Google Scholar

5. P. Wang, P. Wu, K. M. Ohleth, R. W. Egan and M. M. Billah, Phosphodiesterase 4B2 is the predominant phosphodiesterase species and undergoes differential regulation of gene expression in human monocytes and neutrophils, Mol. Pharmacol. 56 (1999) 170-174; DOI: 10.1124/mol.56.1.170.10.1124/mol.56.1.170Search in Google Scholar

6. O. Suzuki, K. Mizukami, M. Etori, Y. Sogawa, N. Takagi, H. Tsuchida, K. Morimoto, T. Goto, T. Yoshino, T. Mikkaichi, K. Hirahara, S. Nakamura and H. Maeda, Evaluation of the therapeutic index of a novel phosphodiesterase 4B-selective inhibitor over phosphodiesterase 4D in mice, J. Pharmacol. Sci. 123 (2013) 219-226; DOI: 10.1254/jphs.13103FP.10.1254/jphs.13103FPSearch in Google Scholar

7. I. Cloez-Tayarani, A. F. Petit-Bertron, H. D. Venters and J. M. Cavaillon, Differential effect of serotonin on cytokine production in lipopolysaccharide-stimulated human peripheral blood mononuclear cells: involvement of 5-hydroxytryptamine2A receptors, Int. Immunol. 15 (2003) 233-240; DOI: 10.1093/intimm/dxg027.10.1093/intimm/dxg027Search in Google Scholar

8. G. Vacca G. W. J. Randerath and A. Gillissen, Inhibition of granulocyte migration by tiotropium bromide, Respir. Res. 12 (2011) article 24; DOI: 10.1186/1465-9921-12-24.10.1186/1465-9921-12-24Search in Google Scholar

9. U. Prabhakar, D. Lipshutz, J. O. Bartus, M. J. Slivjak, E. F. Smith, J. C. Lee and K. M. Esser, Characterization of cAMP-dependent inhibition of LPS-induced TNF alpha production by rolipram, a specific phosphodiesterase IV (PDE IV) inhibitor, Int. J. Immunopharmacol. 16 (1994) 805-816; DOI: 10.1016/0192-0561(94)90054-x.10.1016/0192-0561(94)90054-XSearch in Google Scholar

10. T. Yoshimura, C. Kurita, T. Nagao, E. Usami, T. Nakao, S. Watanabe, J. Kobayashi, F. Yamazaki, H. Tanaka and H. Nagai, Effects of cAMP-phosphodiesterase isozyme inhibitor on cytokine production by lipopolysaccharide-stimulated human peripheral blood mononuclear cells, Gen. Pharmacol. 29 (1997) 633-638; DOI: 10.1016/S0306-3623(96)00580-0.10.1016/S0306-3623(96)00580-0Search in Google Scholar

11. M. D. Houslay, Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown, Trends Biochem. Sci. 35 (2010) 91-100; DOI: 10.1016/j.tibs.2009.09.007.10.1016/j.tibs.2009.09.00719864144Search in Google Scholar

eISSN:
1846-9558
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Pharmacy, other