À propos de cet article

Citez

C. Bonnal, J. M. Ruault, and M. C. Desjean. “Active debris removal: Recent progress and current trends,” Acta Astronautica, vol. 50, 2013, pp. 71–96; doi: 10.1016/j.actaastro.2012.11.009. Search in Google Scholar

S. Estable, et al. “Capturing and deorbiting Envisat with an Airbus Spacetug. Results from the ESA e.deorbit Consolidation Phase study,” Journal of Space Safety Engineering, vol. 7, no. 1, 2020, pp. 52–66; doi: 10.1016/j.jsse.2020.01.003. Search in Google Scholar

P. Huang, Y. Xu, and B. Liang. “Contact and impact dynamics of space manipulator and free-flying target,” Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2005; doi: 10.1109/IROS.2005.1545260. Search in Google Scholar

L. Felicetti, P. Gasbarri, A. Pisculli, M. Sabatini, and G. B. Palmerini. “Design of robotic manipulators for orbit removal of spent launchers’ stages,” Acta Astronautica, vol. 119, 2016, pp. 118–130; doi: 10.1016/j.actaastro.2015.11.012. Search in Google Scholar

F. Aghili. “Optimal control of a space manipulator for detumbling of a target satellite,” Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009; doi: 10.1109/ROBOT.2009.5152235. Search in Google Scholar

B. Zhan, M. Jin, G. Yang, and C. Zhang. “A novel strategy for space manipulator detumbling a non-cooperative target with collision avoidance,” Advances in Space Research, vol. 66(4), 2020, pp. 785–799; doi: 10.1016/j.asr.2020.05.045. Search in Google Scholar

M. Shan, J. Guo, and E. Gill. “Review and comparison of active space debris capturing and removal,” Progress in Aerospace Sciences, vol. 80, 2016, pp. 18–32; doi: 10.1016/j.paerosci.2015.11.001. Search in Google Scholar

K. Seweryn, F. L. Basmadji, and T. Rybus. “Space robot performance during tangent capture of an uncontrolled target satellite,” The Journal of the Astronautical Sciences, vol. 69, 2022, pp. 1017–1047; doi: 10.1007/s40295-022-00330-2. Search in Google Scholar

I. Dulêba. “Impact of control representations on efficiency of local nonholonomic motion planning,” Biuletyn of the Polish Academy of Sciences Technical Sciences, vol. 59, no. 2, 2011, pp. 213–218; doi: 10.2478/v10175-011-0026-x. Search in Google Scholar

J. Ratajczak, and K. Tchoń. “Normal forms and singularities of non–holonomic robotic systems: a study of free–floating space robots,” Systems & Control Letters, vol. 138, 2020, 104661; doi: 10.1016/j.sysconle.2020.104661. Search in Google Scholar

A. Ellery. “Tutorial Review on Space Manipulators for Space Debris Mitigation,” Robotica, vol. 8, no. 2, 2019; doi: 10.3390/robotics8020034. Search in Google Scholar

K. Yoshida, and Y. Umetani. “Control of a space free–flying robot,” Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, USA, 1990; doi: 10.1109/CDC.1990.203553. Search in Google Scholar

T. Rybus, K. Seweryn, and J. Z. Sąsiadek. “Application of predictive control for manipulator mounted on a satellite,” Archives of Control Sciences, vol. 28, no. 1, 2018, pp. 105–118; doi: 10.24425/119079. Search in Google Scholar

P. Palma, K. Seweryn, and T. Rybus. “Impedance control using selected compliant prismatic joint in a free-floating space manipulator,” Aerospace, vol. 9, no. 8, 2022, p. 406; doi: 10.3390/aerospace9080406. Search in Google Scholar

J. Z. Sąsiadek. “Space robotics and its challenges,” Aerospace Robotics, Springer, 2013, pp. 1–8; doi: 10.1007/978-3-642-34020-8_1. Search in Google Scholar

J. Qingxuan, Z. Xiaodong, S. Hanxu, and C. Ming. “Active control of space flexible–joint/flexible–link manipulator,” Proceedings of the 2008 IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China, 2008, pp. 812–818; doi: 10.1109/RAMECH.2008.4681344. Search in Google Scholar

S, Ulrich, J. Z. Sąsiadek, and I. Barkana. “Modeling and direct adaptive control of a flexible–joint manipulator,” Journal of Guidance, Control, And Dynamics, vol. 35, no. 1, 2012, pp. 25–39; doi: 10.2514/1.54083. Search in Google Scholar

X.-Y. Yu. “Augmented robust control of a free–floating flexible space robot,” Journal of Aerospace Engineering, vol. 229, no. 5, 2015, pp. 947–957; doi: 10.1177/0954410014541632. Search in Google Scholar

D. Meng, Y. She, W. Xu, W. Lu, and B. Liang. “Dynamic modeling and vibration characteristics analysis of flexible-link and flexible-joint space manipulator,” Multibody System Dynamics, vol. 43, 2018, pp. 321–347; doi: 10.1007/s11044-017-9611-6. Search in Google Scholar

X. Liu, H. Li, J. Wang, and G. Cai. “Dynamics analysis of flexible space robot with joint friction,” Aerospace Science and Technology, vol. 47, 2015, pp. 164–176; doi: 10.1016/j.ast.2015.09.030. Search in Google Scholar

Z. Chen, Y. Zhang, and Z. Li. “Hybrid Control Scheme Consisting of Adaptive and Optimal Controllers for Flexible-Base Flexible-Joint Space Manipulator with Uncertain Parameters,” Proceedings of the 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 2017; doi: 10.1109/IHMSC.2017.84. Search in Google Scholar

A. Stolfi, P. Gasbarri, and M. Sabatini. “A parametric analysis of a controlled deployable space manipulator for capturing a non-cooperative flexible satellite,” Acta Astronautica, vol. 148, 2018, pp. 317–326; doi: 10.1016/j.actaastro.2018.04.028. Search in Google Scholar

C. Toglia, M. Sabatini, P. Gasbarri, and G. B. Palmerini. “Optimal target grasping of a flexible space manipulator for a class of objectives,” Acta Astronautica, vol. 68(7-8), 2011, pp. 1031–1041; doi: 10.1016/j.actaastro.2010.09.013. Search in Google Scholar

R. Masoudi, and M. Mahzoon. “Maneuvering and Vibrations Control of a Free-Floating Space Robot with Flexible Arms,” Journal of Dynamic Systems, Measurement and Control, vol. 133(5), 2011, 051001; doi: 10.1115/1.4004042. Search in Google Scholar

D. Shang, X. Li, M. Yin, and F. Li. “Tracking control strategy for space flexible manipulator considering nonlinear friction torque based on adaptive fuzzy compensation sliding mode controller,” Advances in Space Research, In Press, 2020; doi: 10.1016/j.asr.2022.04.042. Search in Google Scholar

K. Nanos, and E. Papadopoulos. “On the dynamics and control of flexible joint space manipulator,” Control Engineering Practice, vol. 45, 2015, pp. 230–243; doi: 10.1016/j.conengprac.2015.06.009. Search in Google Scholar

M. Wojtunik, and K. Seweryn. “The influence of the gear reduction ratio on the free–floating space manipulator’s dynamics,” Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2021), 2021, pp. 282–289; doi: 10.5220/0010556502820289. Search in Google Scholar

H. Wang, and Y. Xie. “Prediction error based adaptive Jacobian tracking for free–floating space manipulators,” IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 4, 2012, pp. 3207–3221; doi: 10.1109/TAES.2012.6324694. Search in Google Scholar

O. Ma, H. Dang, and K. Pham. “On–orbit identification of inertia properties of spacecraft using a robotic arm,” Journal of Guidance, Control, and Dynamics, vol. 31, no. 6, 2008, pp. 1761–1771; doi: 10.2514/1.35188. Search in Google Scholar

O.-O. Christidi-Loumpasefski, C. Ntinos, and E. Papadopoulos. “Analytical and experimental parameter estimation for free–floating space manipulator systems,” Proceedings of the 14th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA ’17), Leiden, The Netherlands, 2017. Search in Google Scholar

O.-O. Christidi-Loumpasefski, C. Ntinos, and E. Papadopoulos. “On parameter estimation of flexible space manipulator systems,” Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020; doi: 10.1109/IROS45743.2020.9340768. Search in Google Scholar

Goldstein H., Poole C., and Safko J., Classical Mechanics, Third Edition, Pearson: London, 2001. Search in Google Scholar

F. Cavenago, A. M. Giordano, and M. Massari. “Contact force observer for space robots,” Proceedings of the 58th Conference on Decision and Control, Nice, France, 2019; doi: 10.1109/CDC40024.2019.9029285. Search in Google Scholar

Schaub H., and Junkins J. L., Analytical mechanics of aerospace systems, AIAA: Reston, VA, 2002. Search in Google Scholar

T. Rybus, M. Wojtunik, and F. L. Basmadji. “Optimal collision-free path planning of a free-floating space robot using spline-based trajectories,” Acta Astronautica, vol. 190, 2022, pp. 395–408; doi: 10.1016/j.actaastro.2021.10.012. Search in Google Scholar

J. Oleś, J. Kindracki, T. Rybus, Ł. Meężyk, P. Paszkiewicz, R. Moczydłowski, T. Barciński, K. Seweryn, and P. Wolański. “A 2D microgravity test-bed for the validation of space robot control algorithms,” Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 11, no. 2, 2017, pp. 95–104; doi: 10.14313/JAMRIS_2-2017/21. Search in Google Scholar

F. L. Basmadji, G. Chmaj, T. Rybus, and K. Seweryn. “Microgravity testbed for the development of space robot control systems and the demonstration of orbital maneuvers,” Proceedings of SPIE: Photonics Applications in Astronomy, Communications, Industry and High–Energy Physics Experiments, Wilga, Poland, 2019; doi: 10.1117/12.2537981. Search in Google Scholar

R. Moczydłowski. “Design of elastic element dedicated for space manipulator joint based on FEM topological optimization,” master’s thesis (in Polish: “Projekt elementu podatnego pary kinematycznej manipulatora satelitarnego bazuj1cy na optymalizacji topologicznej z wykorzystaniem oprogramowania MES”), Warsaw University of Technology, 2017. Search in Google Scholar

Garnier H., and Wang L. Advances in industrial control: Identifiication of continuous – time models from sampled data, Springer, London, 2003. Search in Google Scholar

G. Wood, and D. Kennedy. “Simulating Mechanical Systems in Simulink with SimMechanics,” Technical report, The MathWorks, Inc., Natick, USA, 2003. Search in Google Scholar

J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright. “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM Journal of Optimization, vol. 9, no. 1, 1998, pp. 112–147; doi: 10.1137/S1052623496303470. Search in Google Scholar