Accès libre

Analyzis of Rehabilitation Systems in Regards to Requirements Towards Remote Home Rehabilitation Devices

À propos de cet article

Citez

“Armeo power website [online]”. https://www.hocoma.com/solutions/armeo-power/. Accessed: 2020-10-21. Search in Google Scholar

“Armin website [online]”. https://sms.hest.ethz.ch/research/current-research-projects/arminrobot. Accessed: 2020-10-23. Search in Google Scholar

“Barrett technology website [online]”. https://medical.barrett.com/. Accessed: 2020-10-22. Search in Google Scholar

“The datasheet of motion maker by swortec [online]”. http://www.swortec.ch/index.php/products/motionmaker. Accessed: 2020-11-02. Search in Google Scholar

“Eksonr by ekso bionics website [online]”. https://eksobionics.com/eksonr/. Accessed: 2021-01-15. Search in Google Scholar

“Eksoue by ekso bionics website [online]”. https://eksobionics.com/eksoue/, Accessed: 2020-10-23. Search in Google Scholar

“Hal by cyberdene website [online]”. https://www.cyberdyne.jp/. Accessed: 2021-01-15. Search in Google Scholar

“Inmotionarm by bionik labs website [online]”. https://www.bioniklabs.com/products/inmotion-arm. Accessed: 2020-10-23. Search in Google Scholar

“An interview with hans peter gmünder. pwc [online]”. https://magazine.pwc.ch/en/itemdetail-view/partake-in-life. Accessed: 2021-01-15. Search in Google Scholar

“Lokomat by hocoma website [online]”. https: //www.hocoma.com/solutions/lokomat/. Accessed: 2021-01-15. Search in Google Scholar

“Physio by gridbots website [online]”. https://www.gridbots.com/physio. Accessed: 2020-10-10. Search in Google Scholar

“Physiotherabot project website [online]”. http://ytubiomechatronics.com/portfolio-item/low er-limb/, note = Accessed: 2021-11-05. Search in Google Scholar

“Physiotherabot/w1 website [online]”. http://ytubiomechatronics.com/portfolio-item/physiot herabot-w1/. Accessed: 2021-11-05. Search in Google Scholar

“Presentation of prototypes of rehabilitation robots by piap (in polish) [online]”. https://www.youtube.com/watch?v=FSBf5kPEz3k. Accessed: 2021-01-15. Search in Google Scholar

“Reoambulator by motorika website [online]”. http://motorika.com/reoambulator/. Accessed: 2021-01-15. Search in Google Scholar

“Reoambulator by motorika website [online]”. https://www.rehatechnology.com/en/. Accessed: 2021-01-15. Search in Google Scholar

“Reogo by motorika website [online]”. http://motorika.com/reogo/. Accessed: 2020-10-22. Search in Google Scholar

“Rewalk website [online]”. https://rewalk.com/. Accessed: 2021-01-15. Search in Google Scholar

C. Adans-Dester, A. O’Brien, R. Black-Schaffer, and P. Bonato. “Upper extremity rehabilitation with the burt robotic arm”, Archives of Physical Medicine and Rehabilitation, vol. 100, no. 12, 2019, e208–e209. Search in Google Scholar

J. Ahn, and N. Hogan. “Walking is not like reaching: evidence from periodic mechanical perturbations”, PloS one, vol. 7, no. 3, 2012, e31767. Search in Google Scholar

E. Akdoğan, and M. A. Adli. “The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot”, Mechatronics, vol. 21, no. 3, 2011, 509–522. Search in Google Scholar

E. Akdogan, and M. E. Aktan. “Impedance control applications in therapeutic exercise robots”. In: Control Systems Design of Bio-Robotics and Biomechatronics with Advanced Applications, 395–443. Elsevier, 2020. Search in Google Scholar

E. Andrenelli, M. Capecci, L. Di Biagio, L. Pepa, L. Lucarelli, C. Spagnuolo, P. Guidoni, P. Sera fini, F. Morgante, and M. Ceravolo. “Improving gait function and sensorimotor brain plasticity through robotic gait training with g-eo system in parkinson’s disease”, Annals of Physical and Rehabilitation Medicine, vol. 61, 2018, e79–e80. Search in Google Scholar

L. N. Awad, A. Esquenazi, G. E. Francisco, K. J. Nolan, and A. Jayaraman. “The rewalk restore™ soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation”, Journal of neuroengineering and rehabilitation, vol. 17, no. 1, 2020, 1–11. Search in Google Scholar

P. Bontje, R. Kruijne, M. Pol, K. Inoue, R. Kobayashi, Y. Ito, and M. Van Hartingsveldt. “Developing an international research of health-care ict applied for rehabilitation and daily living support between japan and the netherlands”, Assistive Technology, vol. 34, no. 2, 2022, 140–147. Search in Google Scholar

R. S. Calabrò, M. Russo, A. Naro, D. Milardi, T. Balletta, A. Leo, S. Filoni, and P. Bramanti. “Who may benefit from armeo power treatment? a neurophysiological approach to predict neurorehabilitation outcomes”, PM&R, vol. 8, no. 10, 2016, 971–978. Search in Google Scholar

B. Chen, H. Ma, L.-Y. Qin, F. Gao, K.-M. Chan, S.-W. Law, L. Qin, and W.-H. Liao. “Recent developments and challenges of lower extremity exoskeletons”, Journal of Orthopaedic Translation, vol. 5, 2016, 26–37. Search in Google Scholar

Y. Cherni, M. Hajizadeh, F. Dal Maso, and N. A. Turpin. “Effects of body weight support and guidance force settings on muscle synergy during lokomat walking”, European Journal of Applied Physiology, vol. 121, no. 11, 2021, 2967–2980. Search in Google Scholar

O. Cruciger, T. A. Schildhauer, R. C. Meindl, M. Tegenthoff, P. Schwenkreis, M. Citak, and M. Aach. “Impact of locomotion training with a neurologic controlled hybrid assistive limb (hal) exoskeleton on neuropathic pain and health related quality of life (hrqol) in chronic sci: a case study”, Disability and Rehabilitation: Assistive Technology, vol. 11, no. 6, 2016, 529–534. Search in Google Scholar

S. De Biase, L. Cook, D. A. Skelton, M. Witham, and R. Ten Hove. “The covid-19 rehabilitation pandemic”, Age and ageing, vol. 49, no. 5, 2020, 696–700. Search in Google Scholar

U. Demir, S. Kocaoğlu, and E. Akdoğan. “Human impedance parameter estimation using artificial neural network for modelling physiotherapist motion”, Biocybernetics and Biomedical Engineering, vol. 36, no. 2, 2016, 318–326. Search in Google Scholar

I. Díaz, J. M. Catalan, F. J. Badesa, X. Justo, L. D. Lledo, A. Ugartemendia, J. J. Gil, J. Díez, and N. García-Aracil. “Development of a robotic device for post-stroke home tele-rehabilitation”, Advances in Mechanical Engineering, vol. 10, no. 1, 2018, 1687814017752302. Search in Google Scholar

I. Díaz, J. J. Gil, and E. Sánchez. “Lower-limb robotic rehabilitation: literature review and challenges”, Journal of Robotics, vol. 2011, 2011. Search in Google Scholar

J. Dunaj, W. J. Klimasara, and Z. Pilat. “Humanrobot interaction in the rehabilitation robot renus-1”. In: International Conference on Systems, Control and Information Technologies 2016, 2016, 358–367. Search in Google Scholar

D. Eguren, M. Cestari, T. P. Luu, A. Kilicarslan, A. Steele, and J. L. Contreras-Vidal. “Design of a customizable, modular pediatric exoskeleton for rehabilitation and mobility”. In: 2019 IEEE international conference on systems, man and cybernetics (SMC), 2019, 2411–2416. Search in Google Scholar

P. Falkowski. “Light exoskeleton design with topology optimisation and fem simulations for fff technology”, Journal of Automation, Mobile Robotics and Intelligent Systems, 2021, 14–19. Search in Google Scholar

P. Falkowski. “An optimisation problem for exoskeleton-aided functional rehabilitation of an upper extremity”. In: IOP Conference Series: Materials Science and Engineering, vol. 1239, no. 1, 2022, 012012. Search in Google Scholar

P. Falkowski. “Predicting dynamics of a rehabilitation exoskeleton with free degrees of freedom”. In: Conference on Automation, 2022, 223–232. Search in Google Scholar

P. Falkowski, T. Osiak, and A. Pastor. “Analysis of needs and requirements of kinesiotherapy in poland for robot design purposes”, Prace Naukowe - Politechnika Warszawska. Elektronika z. 197, Postępy robotyki. T. 2, 2022. Search in Google Scholar

P. Falkowski, T. Osiak, J. Wilk, N. Prokopiuk, B. Leczkowski, Z. Pilat, and C. Rzymkowski. “Study on the applicability of digital twins for home remote motor rehabilitation”, Sensors, vol. 23, no. 2, 2023, 10.3390/s23020911. Search in Google Scholar

S. Faran, O. Einav, D. Yoeli, M. Kerzhner, D. Geva, G. Magnazi, S. van Kaick, and K.-H. Mauritz. “Reo assessment to guide the reogo therapy: Reliability and validity of novel robotic scores”. In: 2009 Virtual Rehabilitation International Conference, 2009, 209–209. Search in Google Scholar

P. A. Gómez, M. D. Rodríguez, and V. Amela. “Design of a robotic system for diagnosis and rehabilitation of lower limbs”, arXiv preprint arXiv:1710.08126, 2017. Search in Google Scholar

T. Gueye, M. Dedkova, V. Rogalewicz, M. Grunerova-Lippertova, and Y. Angerova. “Early post-stroke rehabilitation for upper limb motor function using virtual reality and exoskeleton: equally efficient in older patients”, Neurologia i Neurochirurgia Polska, vol. 55, no. 1, 2021, 91–96. Search in Google Scholar

M. Gustavsson, C. Ytterberg, and S. Guidetti. “Exploring future possibilities of using information and communication technology in multidisciplinary rehabilitation after stroke–a grounded theory study”, Scandinavian journal of occupational therapy, vol. 27, no. 3, 2020, 223–230. Search in Google Scholar

Y.-w. Hsieh, K.-c. Lin, C.-y. Wu, T.-y. Shih, M.-w. Li, and C.-l. Chen. “Comparison of proximal versus distal upper-limb robotic rehabilitation on motor performance after stroke: a cluster controlled trial”, Scientific reports, vol. 8, no. 1, 2018, 1–11. Search in Google Scholar

N. Iivari, S. Sharma, and L. Ventä-Olkkonen. “Digital transformation of everyday life–how covid-19 pandemic transformed the basic education of the young generation and why information management research should care?”, International Journal of Information Management, vol. 55, 2020, 102183. Search in Google Scholar

M. Iosa, A. Martino Cinnera, F. Capone, A. Cruciani, M. Paolucci, V. Di Lazzaro, S. Paolucci, and G. Morone. “Clinical interpretation of working volume and weight support in upper limb robotic neurorehabilitation after stroke”, Applied Sciences, vol. 11, no. 24, 2021, 12123. Search in Google Scholar

L. J. Jasinski. “Structural exoskeletons and soft fabric exosuits for assistive walking”. In: Wearable Robotics, 311–333. Elsevier, 2020. Search in Google Scholar

B. A. Jnr. “Use of telemedicine and virtual care for remote treatment in response to covid-19 pandemic”, Journal of medical systems, vol. 44, no. 7, 2020, 1–9. Search in Google Scholar

G. J. Kim, J. Hinojosa, A. K. Rao, M. Batavia, and M. W. O’Dell. “Randomized trial on the effects of attentional focus on motor training of the upper extremity using robotics with individuals after chronic stroke”, Archives of physical medicine and rehabilitation, vol. 98, no. 10, 2017, 1924–1931. Search in Google Scholar

J. H. Kim. “Effects of robot-assisted therapy on lower limb in patients with subacute stroke”, Journal of the Korea Academia-Industrial cooperation Society, vol. 17, no. 7, 2016, 459–466. Search in Google Scholar

W. Klimasara, J. Dunaj, P. Stempniak, and Z. Pilat. “Renus-1 and renus-2, the assisted robots system for after stroke mobility rehabilitation”, Prace Naukowe Politechniki Warszawskiej. Elektronika, no. 175, t. 1, 2010, 55–62. Search in Google Scholar

W. J. Klimasara, A. Bratek, M. Pachuta, and Z. Pilat. “Systemy mechatroniczne w rehabilitacji ruchowej”, Pomiary Automatyka Robotyka, vol. 13, no. 2, 2009, 577–586. Search in Google Scholar

K. Kong, J. Choi, K.-W. Park, J. Park, D.-H. Lee, E. Song, B. Na, S. Jeon, T. Kim, H. Choi, et al. “The history and future of the walkon suit: A powered exoskeleton for people with disabilities”, IEEE Industrial Electronics Magazine, 2021. Search in Google Scholar

D. Kuhn and B. Freyberg-Hanl. “Exoskelett: Therapiesystem oder hilfsmittel zum behinderungsausgleich”, Trauma und Berufskrankheit, vol. 20, no. 4, 2018, 254–259. Search in Google Scholar

H. Y. Lee, J. H. Park, and T.-W. Kim. “Comparisons between locomat and walkbot robotic gait training regarding balance and lower extremity function among non-ambulatory chronic acquired brain injury survivors”, Medicine, vol. 100, no. 18, 2021. Search in Google Scholar

M. F. Levin. “What is the potential of virtual reality for post-stroke sensorimotor rehabilitation?”, Expert review of neurotherapeutics, vol. 20, no. 3, 2020, 195–197. Search in Google Scholar

Y. Liu, X. Li, A. Zhu, Z. Zheng, and H. Zhu. “Design and evaluation of a surface electromyographycontrolled lightweight upper arm exoskeleton rehabilitation robot”, International Journal of Advanced Robotic Systems, vol. 18, no. 3, 2021, 17298814211003461. Search in Google Scholar

S. Macovei, and I. Doroftei. “A short overview of upper limb rehabilitation devices”. In: IOP Conference Series: Materials Science and Engineering, vol. 145, no. 5, 2016, 052014. Search in Google Scholar

M. N. Marwaa, H. K. Kristensen, S. Guidetti, and C. Ytterberg. “Physiotherapists’ and occupational therapists’ perspectives on information and communication technology in stroke rehabilitation”, Plos one, vol. 15, no. 8, 2020, e0236831. Search in Google Scholar

K. Miura, M. Koda, K. Tamaki, M. Ishida, A. Marushima, T. Funayama, H. Takahashi, H. Noguchi, K. Mataki, Y. Yasunaga, et al. “Exercise training using hybrid assistive limb (hal) lumbar type for locomotive syndrome: a pilot study”, BMC Musculoskeletal Disorders, vol. 22, no. 1, 2021, 1–8. Search in Google Scholar

M. Mohammadi, H. Knoche, M. Thøgersen, S. H. Bengtson, M. A. Gull, B. Bentsen, M. Gaihede, K. E. Severinsen, and L. N. Andreasen Struijk. “Eyes-free tongue gesture and tongue joystick control of a five dof upper-limb exoskeleton for severely disabled individuals”, Frontiers in Neuroscience, vol. 15, 2021, 739279. Search in Google Scholar

T. Nef, M. Guidali, V. Klamroth-Marganska, and R. Riener. “Armin-exoskeleton robot for stroke rehabilitation”. In: World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany, 2009, 127–130. Search in Google Scholar

I.-A. Nițică, and E. Nechifor. “Antrenamentul mersului cu ajutorul sistemului robotic g-eo evolution”, Journal of Physical Rehabilitation and Sports Medicine, no. 2, 2020, 20–29. Search in Google Scholar

I.-A. Nițică, and E. Nechifor. “Antrenamentul mersului cu ajutorul sistemului robotic g-eo evolution”, Journal of Physical Rehabilitation and Sports Medicine, no. 2, 2020, 20–29. Search in Google Scholar

N. Pavón-Pulido, J. A. López-Riquelme, and J. J. Feliú-Batlle. “Iot architecture for smart control of an exoskeleton robot in rehabilitation by using a natural user interface based on gestures”, Journal of Medical Systems, vol. 44, no. 9, 2020, 1–10. Search in Google Scholar

J. Prvu Bettger, and L. J. Resnik. “Telerehabilitation in the age of covid-19: an opportunity for learning health system research”, Physical Therapy, vol. 100, no. 11, 2020, 1913–1916. Search in Google Scholar

N. Rehmat, J. Zuo, W. Meng, Q. Liu, S. Q. Xie, and H. Liang. “Upper limb rehabilitation using robotic exoskeleton systems: A systematic review”, International Journal of Intelligent Robotics and Applications, vol. 2, no. 3, 2018, 283–295. Search in Google Scholar

A. Roy, H. I. Krebs, J. E. Barton, R. F. Macko, and L. W. Forrester. “Anklebot-assisted locomotor training after stroke: A novel deficit-adjusted control approach”. In: 2013 IEEE International Conference on Robotics and Automation, 2013, 2175–2182. Search in Google Scholar

A. Roy, H. I. Krebs, S. L. Patterson, T. N. Judkins, I. Khanna, L. W. Forrester, R. M. Macko, and N. Hogan. “Measurement of human ankle stiffness using the anklebot”. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, 2007, 356–363. Search in Google Scholar

C. Schmitt, and P. Métrailler. “The motion maker™: a rehabilitation system combining an orthosis with closed-loop electrical muscle stimulation”. In: 8th Vienna international workshop on functional electrical stimulation, no. CONF, 2004, 117–120. Search in Google Scholar

R. A. Søraa, and E. Fosch-Villaronga. “Exoskeletons for all: The interplay between exoskeletons, inclusion, gender, and intersectionality”, Paladyn, Journal of Behavioral Robotics, vol. 11, no. 1, 2020, 217–227. Search in Google Scholar

P. Soto-Acosta. “Covid-19 pandemic: Shifting digital transformation to a high-speed gear”, Information Systems Management, vol. 37, no. 4, 2020, 260–266. Search in Google Scholar

S. Straudi, G. Severini, M. Da Roit, L. D. M. Pizzongolo, C. Martinuzzi, and N. Basaglia. “The dose of robot-assisted gait therapy may influence functional recovery in a multidisciplinary rehabilitation program: an exploratory retrospective study”, International Journal of Rehabilitation Research, vol. 43, no. 2, 2020, 175–182. Search in Google Scholar

K. Swaminathan, and H. I. Krebs. “Analysis of the anklebot training as a method for reducing lower-limb paretic impairment a case study in electromyography”. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), 2015, 555–558. Search in Google Scholar

K. Takahashi, T. Takebayashi, S. Amano, Y. Uchiyama, K. Domen, and K. Hachisuka. “Constrained-induced movement therapy transfer the function gained by upper arm robotic therapy into daily activities”. In: STROKE, vol. 51, 2020. Search in Google Scholar

T. Takebayashi, K. Takahashi, S. Amano, Y. Uchiyama, M. Gosho, K. Domen, and K. Hachisuka. “Assessment of the efficacy of reogo-j robotic training against other rehabilitation therapies for upper-limb hemiplegia after stroke: Protocol for a randomized controlled trial”, Frontiers in neurology, vol. 9, 2018, 730. Search in Google Scholar

R. B. van Dijsseldonk, I. J. van Nes, A. C. Geurts, and N. L. Keijsers. “Exoskeleton home and community use in people with complete spinal cord injury”, Scientific reports, vol. 10, no. 1, 2020, 1–8. Search in Google Scholar

J. Wilk, and P. Falkowski. “A concept of detecting patient hazards during exoskeleton-aided remote home motor rehabilitation”, Prace Naukowe - Politechnika Warszawska. Elektronika z. 197, Postępy robotyki. T. 2, 2022. Search in Google Scholar

H. Zheng, R. Davies, T. Stone, S. Wilson, J. Hammerton, S. J. Mawson, P. Ware, N. D. Black, N. D. Harris, C. Eccleston, et al. “Smart rehabilitation: Implementation of ict platform to support home-based stroke rehabilitation”. In: International Conference on Universal Access in Human-Computer Interaction, 2007, 831–840. Search in Google Scholar