Implementation of Enzyme Family Classification by using Autoencoders in a Study Case with Imbalanced and Underrepresented Classes
31 mars 2025
À propos de cet article
Publié en ligne: 31 mars 2025
Pages: 42 - 48
Reçu: 15 avr. 2024
Accepté: 20 mai 2024
DOI: https://doi.org/10.14313/jamris-2025-005
Mots clés
© 2025 Darian Fernández Gutiérrez et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Results of the family classification
Precision | Recall | F1-Score | |
---|---|---|---|
0.90 | 0.90 | 0.90 | |
0.91 | 1.00 | 0.95 | |
0.89 | 0.80 | 0.84 | |
0.90 | |||
0.90 | 0.90 | 0.90 | |
0.90 | 0.90 | 0.90 |
Number of enzymes per family
Family | Number of enzymes |
---|---|
356 | |
83 |
Comparison of the trainings of the First Level
Loss Function | Loss Function (Validation) | |
---|---|---|
0.0202 | 0.0223 | |
0.0127 | 0.0162 | |
Comparison of the training of the Second Level
Loss Function | Loss Function (Validation) | |
---|---|---|
0.1163 | ||
0.0518 | ||
0.0392 | 0.0350 |
Comparison of different softwares for the classification of sequences into enzymes or non-enzymes (precision)
EzyPred | ECPred | Proteinfer | AE | |
---|---|---|---|---|
0.59 | 0.57 | 0.47 | 0.91 | |
1.00 | 0.82 | 0.95 | 1.00 |
Comparison of different softwares for the classification of sequences into enzymes or non-enzymes (F1-score)
EzyPred | ECPred | Proteinfer | AE | |
---|---|---|---|---|
0.74 | 0.47 | 0.62 | 0.95 | |
0.87 | 0.86 | 0.78 | 0.98 |
Comparison of different softwares for the classification of sequences into enzymes or non-enzymes (recall)
EzyPred | ECPred | Proteinfer | AE | |
---|---|---|---|---|
1.00 | 0.40 | 0.90 | 1.00 | |
0.77 | 0.90 | 0.67 | 0.97 |