The present article is dedicated to the study of the vibration properties of metal-based composite materials and the application of the non-destructive testing method. The main modal parameters of the metal-based composites were investigated. For experimental determination of natural frequencies and modes of oscillations, the method of scanning laser Doppler vibrometry was used. For the numerical modal analysis, the finite element method was used. The material model was a layered composite with isotropic linearly elastic layers and metal layers. The task of identifying the material model was considered as the problem of minimising the discrepancy between the calculated natural frequencies and the experimental ones. The developed method can be recommended for the determination of parameters of material models for calculating the modal characteristics of polymer–metal sandwich sheets and metallic mono-materials composite products. Methodology for identifying models of elastic behaviour of polymer–metal composite materials, based on the results of the experimental modal analysis, is presented. Wavelet-based damage detection is also presented as an appropriate approach for the identification of integral conditions of the metal–polymer–metal composite materials. Results of wavelet transform convolutions are presented.
Microstructure of austenitic stainless steel is primarily monophasic, i.e. austenitic. However, precipitation of the δ-ferrite in the austenite matrix is possible depending on the chemical composition of steel. δ-Ferrite is stable on room temperature but it transforms into σ-phase, carbides and austenite during heat treatment. In this work, the results of analysis of influence of temperature and time on decomposition of δ-ferrite are presented. Magnetic induction method, microstructure and hardness analyses were used for testing the degree of decomposition of the δ-ferrite. Analysis of results showed that increase in temperature and time increases the degree of decomposition of δ-ferrite.
During 1984–1997, the ferronickel plant in Drenas used iron-nickel ore from the mines of the Republic of Kosovo: Glavica and Çikatove (Dushkaje and Suke) mines. However, during the years 2007–2017, when the plant started operating from the cessation of production, which was from 1998 to 2007, some types of iron-nickel ores from different countries began to be used, starting from iron-nickel ores from Kosovo, iron-nickel ores from Albania, ores from Indonesia, ores from the Philippines, ores from Guatemala, ores from Turkey and ores from Macedonia. The ore composition, however, is mainly oxide-laterite ore. Iron-nickel ores in the plant are characterised by high moisture content, a very important factor influencing the process of scraping the charge in rotary kilns and presenting in general. Among the iron-nickel ore used in the ferronickel plant, the ores from Albania are characterised due to their low moisture content when compared with the other ores as well as the high content of iron oxides, which affect the temperature rise inside the furnaces, as the iron ores play an important role in the pre-casting process in rotary kilns.
Primary, secondary and accessory minerals in tonalitic rocks from Iwo region of the Precambrian Basement Complex of Southwestern Nigeria were identified and analysed with the aim of determining the various processes involved during the crystallisation of magma. Thin sections of tonalite were prepared and studied with the aid of a petrographic microscope. The mineral assemblages observed are biotite, plagioclase, alkali-feldspar, amphiboles, pyroxene, quartz, muscovite and chlorite. Allanite, titanite, apatite and zircon occur as accessory minerals. Muscovite and chlorite are found to be secondary minerals. The mineral allanite has a characteristic form of zoning and shows evidence of metamictisation, and is surrounded by dark-coloured biotite having radioactive haloes. Titanite is anhedral to subhedral crystals and forms reaction rim round opaque minerals. Plagioclase shows evidence of compositional zoning as well as plastic deformation of the twin lamellae. The allanite observed is primary in nature and has undergone radioactive disintegration; chlorite and muscovite are formed by secondary processes of chloritization and sericitisation, respectively. The tonalite is formed as a result of rapid cooling of magma close to the Earth's surface.
The present article is dedicated to the study of the vibration properties of metal-based composite materials and the application of the non-destructive testing method. The main modal parameters of the metal-based composites were investigated. For experimental determination of natural frequencies and modes of oscillations, the method of scanning laser Doppler vibrometry was used. For the numerical modal analysis, the finite element method was used. The material model was a layered composite with isotropic linearly elastic layers and metal layers. The task of identifying the material model was considered as the problem of minimising the discrepancy between the calculated natural frequencies and the experimental ones. The developed method can be recommended for the determination of parameters of material models for calculating the modal characteristics of polymer–metal sandwich sheets and metallic mono-materials composite products. Methodology for identifying models of elastic behaviour of polymer–metal composite materials, based on the results of the experimental modal analysis, is presented. Wavelet-based damage detection is also presented as an appropriate approach for the identification of integral conditions of the metal–polymer–metal composite materials. Results of wavelet transform convolutions are presented.
Microstructure of austenitic stainless steel is primarily monophasic, i.e. austenitic. However, precipitation of the δ-ferrite in the austenite matrix is possible depending on the chemical composition of steel. δ-Ferrite is stable on room temperature but it transforms into σ-phase, carbides and austenite during heat treatment. In this work, the results of analysis of influence of temperature and time on decomposition of δ-ferrite are presented. Magnetic induction method, microstructure and hardness analyses were used for testing the degree of decomposition of the δ-ferrite. Analysis of results showed that increase in temperature and time increases the degree of decomposition of δ-ferrite.
During 1984–1997, the ferronickel plant in Drenas used iron-nickel ore from the mines of the Republic of Kosovo: Glavica and Çikatove (Dushkaje and Suke) mines. However, during the years 2007–2017, when the plant started operating from the cessation of production, which was from 1998 to 2007, some types of iron-nickel ores from different countries began to be used, starting from iron-nickel ores from Kosovo, iron-nickel ores from Albania, ores from Indonesia, ores from the Philippines, ores from Guatemala, ores from Turkey and ores from Macedonia. The ore composition, however, is mainly oxide-laterite ore. Iron-nickel ores in the plant are characterised by high moisture content, a very important factor influencing the process of scraping the charge in rotary kilns and presenting in general. Among the iron-nickel ore used in the ferronickel plant, the ores from Albania are characterised due to their low moisture content when compared with the other ores as well as the high content of iron oxides, which affect the temperature rise inside the furnaces, as the iron ores play an important role in the pre-casting process in rotary kilns.
Primary, secondary and accessory minerals in tonalitic rocks from Iwo region of the Precambrian Basement Complex of Southwestern Nigeria were identified and analysed with the aim of determining the various processes involved during the crystallisation of magma. Thin sections of tonalite were prepared and studied with the aid of a petrographic microscope. The mineral assemblages observed are biotite, plagioclase, alkali-feldspar, amphiboles, pyroxene, quartz, muscovite and chlorite. Allanite, titanite, apatite and zircon occur as accessory minerals. Muscovite and chlorite are found to be secondary minerals. The mineral allanite has a characteristic form of zoning and shows evidence of metamictisation, and is surrounded by dark-coloured biotite having radioactive haloes. Titanite is anhedral to subhedral crystals and forms reaction rim round opaque minerals. Plagioclase shows evidence of compositional zoning as well as plastic deformation of the twin lamellae. The allanite observed is primary in nature and has undergone radioactive disintegration; chlorite and muscovite are formed by secondary processes of chloritization and sericitisation, respectively. The tonalite is formed as a result of rapid cooling of magma close to the Earth's surface.