Revista y Edición

Volumen 12 (2022): Edición 3 (July 2022)

Volumen 12 (2022): Edición 2 (April 2022)

Volumen 12 (2022): Edición 1 (January 2022)

Volumen 11 (2021): Edición 4 (October 2021)

Volumen 11 (2021): Edición 3 (July 2021)

Volumen 11 (2021): Edición 2 (April 2021)

Volumen 11 (2021): Edición 1 (January 2021)

Volumen 10 (2020): Edición 4 (October 2020)

Volumen 10 (2020): Edición 3 (July 2020)

Volumen 10 (2020): Edición 2 (April 2020)

Volumen 10 (2020): Edición 1 (January 2020)

Volumen 9 (2019): Edición 4 (October 2019)

Volumen 9 (2019): Edición 3 (July 2019)

Volumen 9 (2019): Edición 2 (April 2019)

Volumen 9 (2019): Edición 1 (January 2019)

Volumen 8 (2018): Edición 4 (October 2018)

Volumen 8 (2018): Edición 3 (July 2018)

Volumen 8 (2018): Edición 2 (April 2018)

Volumen 8 (2018): Edición 1 (January 2018)

Volumen 7 (2017): Edición 4 (October 2017)

Volumen 7 (2017): Edición 3 (July 2017)

Volumen 7 (2017): Edición 2 (April 2017)

Volumen 7 (2017): Edición 1 (January 2017)

Volumen 6 (2016): Edición 4 (October 2016)

Volumen 6 (2016): Edición 3 (July 2016)

Volumen 6 (2016): Edición 2 (April 2016)

Volumen 6 (2016): Edición 1 (January 2016)

Volumen 5 (2015): Edición 4 (October 2015)

Volumen 5 (2015): Edición 3 (July 2015)

Volumen 5 (2015): Edición 2 (April 2015)

Volumen 5 (2015): Edición 1 (January 2015)

Volumen 4 (2014): Edición 4 (October 2014)

Volumen 4 (2014): Edición 3 (July 2014)

Volumen 4 (2014): Edición 2 (April 2014)

Volumen 4 (2014): Edición 1 (January 2014)

Volumen 3 (2013): Edición 4 (October 2013)

Volumen 3 (2013): Edición 3 (July 2013)

Volumen 3 (2013): Edición 2 (April 2013)

Volumen 3 (2013): Edición 1 (January 2013)

Detalles de la revista
Formato
Revista
eISSN
2449-6499
Publicado por primera vez
30 Dec 2014
Periodo de publicación
4 veces al año
Idiomas
Inglés

Buscar

Volumen 9 (2019): Edición 2 (April 2019)

Detalles de la revista
Formato
Revista
eISSN
2449-6499
Publicado por primera vez
30 Dec 2014
Periodo de publicación
4 veces al año
Idiomas
Inglés

Buscar

5 Artículos
Acceso abierto

Fine Tuning of Agent-Based Evolutionary Computing

Publicado en línea: 31 Dec 2018
Páginas: 81 - 97

Resumen

Abstract

Evolutionary Multi-agent System introduced by late Krzysztof Cetnarowicz and developed further at the AGH University of Science and Technology became a reliable optimization system, both proven experimentally and theoretically. This paper follows a work of Byrski further testing and analyzing the efficacy of this metaheuristic based on popular, high-dimensional benchmark functions. The contents of this paper will be useful for anybody willing to apply this computing algorithm to continuous and not only optimization.

Palabras clave

  • multi-agent systems
  • metaheuristics
  • evolutionary computing
Acceso abierto

Development of C-Means Clustering Based Adaptive Fuzzy Controller for a Flapping Wing Micro Air Vehicle

Publicado en línea: 31 Dec 2018
Páginas: 99 - 109

Resumen

Abstract

Advanced and accurate modelling of a Flapping Wing Micro Air Vehicle (FW MAV) and its control is one of the recent research topics related to the field of autonomous MAVs. Some desiring features of the FW MAV are quick flight, vertical take-off and landing, hovering, and fast turn, and enhanced manoeuvrability contrasted with similar-sized fixed and rotary wing MAVs. Inspired by the FW MAV’s advanced features, a four-wing Nature-inspired (NI) FW MAV is modelled and controlled in this work. The Fuzzy C-Means (FCM) clustering algorithm is utilized to construct the data-driven NIFW MAV model. Being model free, it does not depend on the system dynamics and can incorporate various uncertainties like sensor error, wind gust etc. Furthermore, a Takagi-Sugeno (T-S) fuzzy structure based adaptive fuzzy controller is proposed. The proposed adaptive controller can tune its antecedent and consequent parameters using FCM clustering technique. This controller is employed to control the altitude of the NIFW MAV, and compared with a standalone Proportional Integral Derivative (PID) controller, and a Sliding Mode Control (SMC) theory based advanced controller. Parameter adaptation of the proposed controller helps to outperform it static PID counterpart. Performance of our controller is also comparable with its advanced and complex counterpart namely SMC-Fuzzy controller.

Palabras clave

  • adaptive fuzzy
  • clustering
  • flapping wing
  • micro air vehicle
Acceso abierto

Topological Properties of Four-Layered Neural Networks

Publicado en línea: 31 Dec 2018
Páginas: 111 - 122

Resumen

Abstract

A topological property or index of a network is a numeric number which characterises the whole structure of the underlying network. It is used to predict the certain changes in the bio, chemical and physical activities of the networks. The 4-layered probabilistic neural networks are more general than the 3-layered probabilistic neural networks. Javaid and Cao [Neural Comput. and Applic., DOI 10.1007/s00521-017-2972-1] and Liu et al. [Journal of Artificial Intelligence and Soft Computing Research, 8(2018), 225-266] studied the certain degree and distance based topological indices (TI’s) of the 3-layered probabilistic neural networks. In this paper, we extend this study to the 4-layered probabilistic neural networks and compute the certain degree-based TI’s. In the end, a comparison between all the computed indices is included and it is also proved that the TI’s of the 4-layered probabilistic neural networks are better being strictly greater than the 3-layered probabilistic neural networks.

Palabras clave

  • degree of node
  • topological properties
  • neural network
  • probabilistic neural network
Acceso abierto

Supposed Maximum Mutual Information for Improving Generalization and Interpretation of Multi-Layered Neural Networks

Publicado en línea: 31 Dec 2018
Páginas: 123 - 147

Resumen

Abstract

The present paper1 aims to propose a new type of information-theoretic method to maximize mutual information between inputs and outputs. The importance of mutual information in neural networks is well known, but the actual implementation of mutual information maximization has been quite difficult to undertake. In addition, mutual information has not extensively been used in neural networks, meaning that its applicability is very limited. To overcome the shortcoming of mutual information maximization, we present it here in a very simplified manner by supposing that mutual information is already maximized before learning, or at least at the beginning of learning. The method was applied to three data sets (crab data set, wholesale data set, and human resources data set) and examined in terms of generalization performance and connection weights. The results showed that by disentangling connection weights, maximizing mutual information made it possible to explicitly interpret the relations between inputs and outputs.

Palabras clave

  • mutual information
  • disentanglement
  • generalization
  • interpretation
Acceso abierto

Impact of Learners’ Quality and Diversity in Collaborative Clustering

Publicado en línea: 31 Dec 2018
Páginas: 149 - 165

Resumen

Abstract

Collaborative Clustering is a data mining task the aim of which is to use several clustering algorithms to analyze different aspects of the same data. The aim of collaborative clustering is to reveal the common underlying structure of data spread across multiple data sites by applying clustering techniques. The idea of collaborative clustering is that each collaborator shares some information about the segmentation (structure) of its local data and improve its own clustering with the information provided by the other learners. This paper analyses the impact of the quality and the diversity of the potential learners to the quality of the collaboration for topological collaborative clustering algorithms based on the learning of a Self-Organizing Map (SOM). Experimental analysis on real data-sets showed that the diversity between learners impact the quality of the collaboration. We also showed that some internal indexes of quality are a good estimator of the increase of quality due to the collaboration.

Palabras clave

  • collaborative clustering
  • topological neural networks
  • unsupervised learning
  • diversity
  • quality
5 Artículos
Acceso abierto

Fine Tuning of Agent-Based Evolutionary Computing

Publicado en línea: 31 Dec 2018
Páginas: 81 - 97

Resumen

Abstract

Evolutionary Multi-agent System introduced by late Krzysztof Cetnarowicz and developed further at the AGH University of Science and Technology became a reliable optimization system, both proven experimentally and theoretically. This paper follows a work of Byrski further testing and analyzing the efficacy of this metaheuristic based on popular, high-dimensional benchmark functions. The contents of this paper will be useful for anybody willing to apply this computing algorithm to continuous and not only optimization.

Palabras clave

  • multi-agent systems
  • metaheuristics
  • evolutionary computing
Acceso abierto

Development of C-Means Clustering Based Adaptive Fuzzy Controller for a Flapping Wing Micro Air Vehicle

Publicado en línea: 31 Dec 2018
Páginas: 99 - 109

Resumen

Abstract

Advanced and accurate modelling of a Flapping Wing Micro Air Vehicle (FW MAV) and its control is one of the recent research topics related to the field of autonomous MAVs. Some desiring features of the FW MAV are quick flight, vertical take-off and landing, hovering, and fast turn, and enhanced manoeuvrability contrasted with similar-sized fixed and rotary wing MAVs. Inspired by the FW MAV’s advanced features, a four-wing Nature-inspired (NI) FW MAV is modelled and controlled in this work. The Fuzzy C-Means (FCM) clustering algorithm is utilized to construct the data-driven NIFW MAV model. Being model free, it does not depend on the system dynamics and can incorporate various uncertainties like sensor error, wind gust etc. Furthermore, a Takagi-Sugeno (T-S) fuzzy structure based adaptive fuzzy controller is proposed. The proposed adaptive controller can tune its antecedent and consequent parameters using FCM clustering technique. This controller is employed to control the altitude of the NIFW MAV, and compared with a standalone Proportional Integral Derivative (PID) controller, and a Sliding Mode Control (SMC) theory based advanced controller. Parameter adaptation of the proposed controller helps to outperform it static PID counterpart. Performance of our controller is also comparable with its advanced and complex counterpart namely SMC-Fuzzy controller.

Palabras clave

  • adaptive fuzzy
  • clustering
  • flapping wing
  • micro air vehicle
Acceso abierto

Topological Properties of Four-Layered Neural Networks

Publicado en línea: 31 Dec 2018
Páginas: 111 - 122

Resumen

Abstract

A topological property or index of a network is a numeric number which characterises the whole structure of the underlying network. It is used to predict the certain changes in the bio, chemical and physical activities of the networks. The 4-layered probabilistic neural networks are more general than the 3-layered probabilistic neural networks. Javaid and Cao [Neural Comput. and Applic., DOI 10.1007/s00521-017-2972-1] and Liu et al. [Journal of Artificial Intelligence and Soft Computing Research, 8(2018), 225-266] studied the certain degree and distance based topological indices (TI’s) of the 3-layered probabilistic neural networks. In this paper, we extend this study to the 4-layered probabilistic neural networks and compute the certain degree-based TI’s. In the end, a comparison between all the computed indices is included and it is also proved that the TI’s of the 4-layered probabilistic neural networks are better being strictly greater than the 3-layered probabilistic neural networks.

Palabras clave

  • degree of node
  • topological properties
  • neural network
  • probabilistic neural network
Acceso abierto

Supposed Maximum Mutual Information for Improving Generalization and Interpretation of Multi-Layered Neural Networks

Publicado en línea: 31 Dec 2018
Páginas: 123 - 147

Resumen

Abstract

The present paper1 aims to propose a new type of information-theoretic method to maximize mutual information between inputs and outputs. The importance of mutual information in neural networks is well known, but the actual implementation of mutual information maximization has been quite difficult to undertake. In addition, mutual information has not extensively been used in neural networks, meaning that its applicability is very limited. To overcome the shortcoming of mutual information maximization, we present it here in a very simplified manner by supposing that mutual information is already maximized before learning, or at least at the beginning of learning. The method was applied to three data sets (crab data set, wholesale data set, and human resources data set) and examined in terms of generalization performance and connection weights. The results showed that by disentangling connection weights, maximizing mutual information made it possible to explicitly interpret the relations between inputs and outputs.

Palabras clave

  • mutual information
  • disentanglement
  • generalization
  • interpretation
Acceso abierto

Impact of Learners’ Quality and Diversity in Collaborative Clustering

Publicado en línea: 31 Dec 2018
Páginas: 149 - 165

Resumen

Abstract

Collaborative Clustering is a data mining task the aim of which is to use several clustering algorithms to analyze different aspects of the same data. The aim of collaborative clustering is to reveal the common underlying structure of data spread across multiple data sites by applying clustering techniques. The idea of collaborative clustering is that each collaborator shares some information about the segmentation (structure) of its local data and improve its own clustering with the information provided by the other learners. This paper analyses the impact of the quality and the diversity of the potential learners to the quality of the collaboration for topological collaborative clustering algorithms based on the learning of a Self-Organizing Map (SOM). Experimental analysis on real data-sets showed that the diversity between learners impact the quality of the collaboration. We also showed that some internal indexes of quality are a good estimator of the increase of quality due to the collaboration.

Palabras clave

  • collaborative clustering
  • topological neural networks
  • unsupervised learning
  • diversity
  • quality

Planifique su conferencia remota con Sciendo