Cite

Khalil, S.F., Mohktar, M.S. and Ibrahim, F., 2014. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors, 14(6), pp.10895-10928. https://doi.org/10.3390/s140610895KhalilS.F.MohktarM.S.IbrahimF.2014The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseasesSensors1461089510928doi.org/10.3390/s14061089510.3390/s140610895411836224949644Search in Google Scholar

Bera, T.K., 2014. Bioelectrical impedance methods for noninvasive health monitoring: a review. Journal of Medical Engineering, 2014. https://doi.org/10.1155/2014/381251BeraT.K.2014Bioelectrical impedance methods for noninvasive health monitoring: a reviewJournal of Medical Engineering2014doi.org/10.1155/2014/38125110.1155/2014/381251478269127006932Search in Google Scholar

World Health Organization (September 2016 update). Media center- Fact sheet. Retrieved from: www.who.int/mediacentre/factsheets/fs317/en/World Health Organization (September 2016 update)Media center- Fact sheetRetrieved fromwww.who.int/mediacentre/factsheets/fs317/en/Search in Google Scholar

Kyle U.G., Bosaeus I., De Lorenzo A.D., Deurenberg P., Elia M., Gómez J.M., Heitmann B.L., Kent-Smith L., Melchior J.-C., Pirlich M. Bioelectrical impedance analysis—Part i: Review of principles and methods. Clin. Nutr. 2004;23:1226–1243. https://doi.org/10.1016/j.clnu.2004.06.004KyleU.G.BosaeusI.DeLorenzo A.D.DeurenbergP.EliaM.GómezJ.M.HeitmannB.L.Kent-SmithL.MelchiorJ.-C.PirlichM.Bioelectrical impedance analysis—Part i: Review of principles and methodsClin. Nutr20042312261243doi.org/10.1016/j.clnu.2004.06.004Open DOISearch in Google Scholar

Martinsen Ø.G., Grimnes S. Bioimpedance and Bioelectricity Basics. Academic Press; Waltham, MA, USA: 2010.MartinsenØ.G.GrimnesSBioimpedance and Bioelectricity BasicsAcademic PressWaltham, MA, USA2010Search in Google Scholar

Mitchell, A.C. and Nellis, W.J., 1982. Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa (1 Mbar) pressure range. The Journal of Chemical Physics, 76(12), pp.6273-6281. https://doi.org/10.1063/1.443030MitchellA.C.NellisW.J.1982Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa (1 Mbar) pressure rangeThe Journal of Chemical Physics761262736281doi.org/10.1063/1.443030Open DOISearch in Google Scholar

Dai, T. and Adler, A., 2006, May. Blood impedance characterization from pulsatile measurements. In 2006 Canadian Conference on Electrical and Computer Engineering (pp. 983-986). IEEE. https://doi.org/10.1109/CCECE.2006.277500DaiT.AdlerA.2006Blood impedance characterization from pulsatile measurements2006 Canadian Conference on Electrical and Computer Engineering983986IEEEdoi.org/10.1109/CCECE.2006.277500Open DOISearch in Google Scholar

Stiles, D.K. and Oakley, B.A., 2003, September. Comparison of conformal and nonconformal meshes in the electromagnetic simulation of atherosclerotic lesions. In Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE (Vol. 4, pp. 3005-3008). IEEE. https://doi.org/10.1109/IEMBS.2003.1280772StilesD.K.OakleyB.A.2003Comparison of conformal and nonconformal meshes in the electromagnetic simulation of atherosclerotic lesionsEngineering in Medicine and Biology Society, 2003Proceedings of the 25th Annual International Conference of the IEEEVol. 430053008IEEEdoi.org/10.1109/IEMBS.2003.1280772Open DOISearch in Google Scholar

Christophe Rubeck , Stéphane BONNET , Fadwa Ben Amara , Claire Pereira , Sadok GHARBI. 2015. A human skin model for body hydration monitoring by electrical impedance measurement. COMSOL conference.ChristopheRubeckStéphaneBONNETFadwaBen AmaraClairePereiraSadokGHARBI.2015A human skin model for body hydration monitoring by electrical impedance measurementCOMSOL conferenceSearch in Google Scholar

Noisakran, S., Onlamoon, N., Songprakhon, P., Hsiao, H.M., Chokephaibulkit, K. and Perng, G.C., 2010. Cells in dengue virus infection in vivo. Advances in virology, 2010. https://doi.org/10.1155/2010/164878NoisakranS.OnlamoonN.SongprakhonP.HsiaoH.M.ChokephaibulkitK.PerngG.C.2010Cells in dengue virus infection in vivoAdvances in virology, 2010doi.org/10.1155/2010/16487810.1155/2010/164878327605722331984Search in Google Scholar

Nakatani, S., Yamagishi, M., Tamai, J., Goto, Y., Umeno, T., Kawaguchi, A., Yutani, C. and Miyatake, K., 1995. Assessment of coronary artery distensibility by intravascular ultrasound. Circulation, 91(12), pp.2904-2910. https://doi.org/10.1161/01.CIR.91.12.2904NakataniS.YamagishiM.TamaiJ.GotoY.UmenoT.KawaguchiA.YutaniC.MiyatakeK.1995Assessment of coronary artery distensibility by intravascular ultrasoundCirculation911229042910doi.org/10.1161/01.CIR.91.12.2904Open DOISearch in Google Scholar

Stiles, D.K. and Oakley, B.A., 2003, September. Comparison of conformal and nonconformal meshes in the electromagnetic simulation of atherosclerotic lesions. In Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE (Vol. 4, pp. 3005-3008). IEEE. https://doi.org/10.1109/IEMBS.2003.1280772StilesD.K.OakleyB.A.2003 Comparison of conformal and nonconformal meshes in the electromagnetic simulation of atherosclerotic lesionsEngineering in Medicine and Biology Society, 2003Vol. 430053008IEEEdoi.org/10.1109/IEMBS.2003.1280772Open DOISearch in Google Scholar

Ferreira, D.W. and Lebensztajn, L., 2013. A systematic sensitivity analysis of the performance of a transcutaneous energy transmitter for design purposes. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 12(2), pp.292-306. https://doi.org/10.1590/S2179-10742013000200005FerreiraD.W.LebensztajnL.2013A systematic sensitivity analysis of the performance of a transcutaneous energy transmitter for design purposesJournal of Microwaves, Optoelectronics and Electromagnetic Applications122292306doi.org/10.1590/S2179-1074201300020000510.1590/S2179-10742013000200005Search in Google Scholar

Fluid-structure interaction in a network of blood vessels, model, COMSOL.Fluid-structure interaction in a network of blood vessels, modelCOMSOLSearch in Google Scholar

Anand, G., Lowe, A. and Al-Jumaily, A.M., 2016. Simulation of impedance measurements at human forearm within 1 kHz to 2 MHz. Journal of Electrical Bioimpedance, 7(1), pp.20-27. https://doi.org/10.5617/jeb.2657AnandG.LoweA.Al-JumailyA.M.2016Simulation of impedance measurements at human forearm within 1 kHz to 2 MHzJournal of Electrical Bioimpedance712027doi.org/10.5617/jeb.2657Open DOISearch in Google Scholar

Mitchell, A.C. and Nellis, W.J., 1982. Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa (1 Mbar) pressure range. The Journal of Chemical Physics, 76(12), pp.6273-6281. https://doi.org/10.1063/1.443030MitchellA.C.NellisW.J.1982Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa (1 Mbar) pressure rangeThe Journal of Chemical Physics761262736281doi.org/10.1063/1.443030Open DOISearch in Google Scholar

Topsakal, E., Karacolak, T. and Moreland, E.C., 2011, August. Glucose-dependent dielectric properties of blood plasma. In General Assembly and Scientific Symposium, 2011 XXXth URSI (pp. 1-4). IEEE. https://doi.org/10.1109/URSIGASS.2011.6051324TopsakalE.KaracolakT.MorelandE.C.2011Glucose-dependent dielectric properties of blood plasmaGeneral Assembly and Scientific Symposium, 2011 XXXth URSI14doi.org/10.1109/URSIGASS.2011.6051324Open DOISearch in Google Scholar