Acceso abierto

Low power current sources for bioimpedance measurements: a comparison between Howland and OTA-based CMOS circuits


Cite

Dean DA, Ramanathan T, Machado D, Sundararajan,R. Electrical Impedance Spectroscopy Study of Biological Tissues. J. Electrostat. 2008;66(3-4):165–77. http://dx.doi.org/10.1016/j.elstat.2007.11.0051925561410.1016/j.elstat.2007.11.005DeanDARamanathanTMachadoDSundararajanRElectrical Impedance Spectroscopy Study of Biological TissuesJ. Electrostat2008663-416577http://dx.doi.org/10.1016/j.elstat.2007.11.005Search in Google Scholar

Kim BS, Isaacson D, Xia H, Kao TJ et al. A method for analyzing electrical impedance spectroscopy data from breast cancer patients. Physiol Meas. 2007;28(7):S237–46. http://dx.doi.org/10.1088/0967-3334/28/7/S1710.1088/0967-3334/28/7/S1717664638KimBSIsaacsonDXiaHKaoTJA method for analyzing electrical impedance spectroscopy data from breast cancer patientsPhysiol Meas2007287S23746http://dx.doi.org/10.1088/0967-3334/28/7/S17Open DOISearch in Google Scholar

Keshtkar A, Salehnia Z, Shokouhi, B. Bladder Cancer Detection Using Electrical Impedance Technique (Tabriz Mark 1). Pathology Research International. 2012;2012:1-5. http://dx.doi.org/10.1155/2012/470101KeshtkarASalehniaZShokouhiBBladder Cancer Detection Using Electrical Impedance Technique (Tabriz Mark 1)Pathology Research International2012201215http://dx.doi.org/10.1155/2012/47010110.1155/2012/470101Search in Google Scholar

Halter RJ, Hartov A, Heaney JA et al. Electrical Impedance Spectroscopy of the Human Prostate. IEEE Transactions on Biomedical Engineering. 2007;54(7):1321-7. http://dx.doi.org/10.1109/TBME.2007.89733110.1109/TBME.2007.897331HalterRJHartovAHeaneyJAElectrical Impedance Spectroscopy of the Human ProstateIEEE Transactions on Biomedical Engineering200754713217http://dx.doi.org/10.1109/TBME.2007.897331Open DOISearch in Google Scholar

Skourou C, Hoopes PJ, Strawbridge RR, Paulsen KD. Feasibility studies of electrical impedance spectroscopy for early tumor detection in rats. Physiological Meas. 2004;25:335–46. http://dx.doi.org/10.1088/0967-3334/25/1/03710.1088/0967-3334/25/1/037SkourouCHoopesPJStrawbridgeRRPaulsenKDFeasibility studies of electrical impedance spectroscopy for early tumor detection in ratsPhysiological Meas20042533546http://dx.doi.org/10.1088/0967-3334/25/1/037Open DOISearch in Google Scholar

Skourou C, Rohr A, Hoopes PJ, Paulsen KD. In vivo EIS characterization of tumour tissue properties is dominated by excess extracellular fluid. Phys. Med. Biol. 2007;52:347–63. http://dx.doi.org/10.1088/0031-9155/52/2/00310.1088/0031-9155/52/2/00317202619SkourouCRohrAHoopesPJPaulsenKDIn vivo EIS characterization of tumour tissue properties is dominated by excess extracellular fluidPhys. Med. Biol20075234763http://dx.doi.org/10.1088/0031-9155/52/2/003Open DOISearch in Google Scholar

Van Kreel BK. Multi-frequency bioimpedance measurements of children in intensive care. Med. Biol. Eng. Comput. 2001;39:551–7. http://dx.doi.org/10.1007/BF0234514510.1007/BF0234514511712651VanKreel BKMulti-frequency bioimpedance measurements of children in intensive careMed. Biol. Eng. Comput2001395517http://dx.doi.org/10.1007/BF02345145Open DOISearch in Google Scholar

Lingwood BE, Dunster KR, Colditz PB, Ward LC. Noninvasive measurement of cerebral bioimpedance for detection of cerebral edema in the neonatal piglet. Brain Res. 2002;945:97–105. http://dx.doi.org/10.1016/S0006-8993(02)02744-01211395610.1016/S0006-8993(02)02744-0LingwoodBEDunsterKRColditzPBWardLCNoninvasive measurement of cerebral bioimpedance for detection of cerebral edema in the neonatal pigletBrain Res200294597105http://dx.doi.org/10.1016/S0006-8993(02)02744-0Search in Google Scholar

Seoane F, Lindecrantz K, Olsson T et al. Spectroscopy study of the dynamics of the transencephalic electrical impedance in the perinatal brain during hypoxia. Physiol. Meas. 2005;26: 849–63. http://dx.doi.org/10.1088/0967-3334/26/5/02110.1088/0967-3334/26/5/02116088073SeoaneFLindecrantzKOlssonTSpectroscopy study of the dynamics of the transencephalic electrical impedance in the perinatal brain during hypoxiaPhysiol. Meas20052684963http://dx.doi.org/10.1088/0967-3334/26/5/02116088073Open DOISearch in Google Scholar

Moissl UM, Wabel MP, Chamney PW et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiological Measurement. 2006;27(9):921-33. http://dx.doi.org/10.1088/0967-3334/27/9/01210.1088/0967-3334/27/9/01216868355MoisslUMWabelMPChamneyPWBody fluid volume determination via body composition spectroscopy in health and diseasePhysiological Measurement200627992133http://dx.doi.org/10.1088/0967-3334/27/9/01216868355Open DOISearch in Google Scholar

Wang ZM, Deurenberg P, Guo SS et al. Six-compartment body composition model: Inter-method comparisons of total body fat measurement. International Journal of Obesity. 1998;22:329-37. http://dx.doi.org/10.1038/sj.ijo.080059010.1038/sj.ijo.0800590WangZMDeurenbergPGuoSSSix-compartment body composition model: Inter-method comparisons of total body fat measurementInternational Journal of Obesity19982232937http://dx.doi.org/10.1038/sj.ijo.08005909578238Open DOISearch in Google Scholar

Bertemes-Filho, P, Negri, L, Paterno, AS. Detection of bovine milk adulterants using bioimpedance measurements and artificial neural network. In: 5th European Conference of the International Federation for Medical and Biological Engineering. Budapest: 2011. p. 1275–8. http://dx.doi.org/10.1007/978-3-642-23508-5_330Bertemes-FilhoPNegriLPaternoASDetection of bovine milk adulterants using bioimpedance measurements and artificial neural network5%th European Conference of the International Federation for Medical and Biological EngineeringBudapest20111275–8http://dx.doi.org/10.1007/978-3-642-23508-5_33010.1007/978-3-642-23508-5_330Search in Google Scholar

Paterno AS, Bertemes-Filho, P, Negri, LH. Efficient computational techniques in bioimpedance spectroscopy. In: Applied Biological Engineering - Principles and Practice. Rijeka: InTech - Open Access Publisher. 2012:1-26. http://dx.doi.org/10.5772/36307PaternoASBertemes-FilhoPNegriLHEfficient computational techniques in bioimpedance spectroscopyApplied Biological Engineering - Principles and PracticeRijekaInTech - Open Access Publisher2012126http://dx.doi.org/10.5772/3630710.5772/36307Search in Google Scholar

Bertemes-Filho P. Tissue Characterisation using an Impedance Spectroscopy Probe. PhD thesis. University of Sheffield. 2002. 96 p.Bertemes-FilhoP.Tissue Characterisation using an Impedance Spectroscopy ProbePhD thesisUniversity of Sheffield200296Search in Google Scholar

Grimnes S, Martinsen OG. Bioimpedance and Bioelectricity Basics. Academic Press. 2000. 360 p.GrimnesSMartinsenOGBioimpedance and Bioelectricity BasicsAcademic Press200036010.1016/B978-012303260-7/50009-5Search in Google Scholar

Yúfera A, Rueda A. Design of A CMOS Closed-Loop System Useful for Bio-Impedance Measurements . In: 16th IEEE International Conference on Electronics, Circuits and Systems. Tunisia: 2009. p. 948-51.YúferaARuedaADesign of A CMOS Closed-Loop System Useful for Bio-Impedance Measurements16th IEEE International Conference on Electronics, Circuits and SystemsTunisia20099485110.1109/ICECS.2009.5410818Search in Google Scholar

Ferreira J, Seoane F, Ansede A, Bragos R. AD5933-based spectrometer for electrical bioimpedance applications. Journal of Physics: Conference Series. 2010; 224(1):1-4.FerreiraJSeoaneFAnsedeABragosRAD5933-based spectrometer for electrical bioimpedance applicationsJournal of Physics: Conference Series201022411410.1088/1742-6596/224/1/012011Search in Google Scholar

Analog Devices AD5933 Product web site. Accessed on 2010-01-15. Available from: http://www.analog.com/en/AD5933/productsearch.htmlAnalog Devices AD5933Product web site. Accessed on 2010-01-15. Available fromhttp://www.analog.com/en/AD5933/productsearch.htmlSearch in Google Scholar

Ruha A, Kostamovaara J, Saynajakangas S. A micropower analog-digital heart rate detector chip. Analog Integrated Circuits and Signal Processing. 1994; 5:147-68. http://dx.doi.org/10.1007/BF0127264910.1007/BF01272649RuhaAKostamovaaraJSaynajakangasSA micropower analog-digital heart rate detector chipAnalog Integrated Circuits and Signal Processing1994514768http://dx.doi.org/10.1007/BF01272649Open DOISearch in Google Scholar

Novo A, Gerosa A, Neviani A. A submicrometer CMOS programamable charge pump for implantable pacemarker. Analog Integrated Circuits and Signal Procesing. 2001;21:211-7.NovoAGerosaANevianiAA submicrometer CMOS programamable charge pump for implantable pacemarkerAnalog Integrated Circuits and Signal Procesing2001212117Search in Google Scholar

Yúfera A, Leger G, Rodríguez-Villegas EO et al. An integrated circuit for tissue impedance measure. In: Proc. 2nd Ann. Int. IEEE EMBS. Madison: 2002. p. 88–93.YúferaALegerGRodríguez-VillegasEOAn integrated circuit for tissue impedance measureProc. 2nd Ann. Int. IEEE EMBSMadison200288–93Search in Google Scholar

Aberg P, Nicander I, Ollmar S. Minimally invasive electrical impedance spectroscopy of skin exemplified by skin cancer assessments. 7. In: IEEE Proc. of the EMBS Annual Int. Conf. Cancun: 2003. p. 3211-14.AbergPNicanderIOllmarSMinimally invasive electrical impedance spectroscopy of skin exemplified by skin cancer assessments. 7IEEE Proc. of the EMBS Annual Int. ConfCancun2003321114Search in Google Scholar

Emtestam L, Nicander I, Strenstrom M, Ollmar S. Electrical impedance of nodular basal cell carcinoma: A pilot study. Dermatology. 1998;197:313-6. http://dx.doi.org/10.1159/00001802310.1159/0000180239873166EmtestamLNicanderIStrenstromMOllmarSElectrical impedance of nodular basal cell carcinoma: A pilot studyDermatology19981973136http://dx.doi.org/10.1159/0000180239873166Open DOISearch in Google Scholar

Brown BH, Tidy J, Boston K, et al. Tetrapolar measurement of cervical tissue structure using impedance spectroscopy. In: 20th Annual Int. Conf. on Biomed. Eng. 1998. IEEE Proc. vol 4. p. 2886-9.BrownBHTidyJBostonKTetrapolar measurement of cervical tissue structure using impedance spectroscopy20th Annual Int. Conf. on Biomed. Eng. 1998. IEEE Procvol 42886910.1109/IEMBS.1998.746089Search in Google Scholar

González-Correa CA, Brown BH, Smallwood RH, et al. Virtual Biopsies in Barrett's Esophagus using an Impedance Probe. Annals New York Academy of Scienc. 1999;873:31321. http://dx.doi.org/10.1111/j.1749-6632.1999.tb09479.xGonzález-CorreaCABrownBHSmallwoodRHVirtual Biopsies in Barrett's Esophagus using an Impedance ProbeAnnals New York Academy of Scienc199987331321http://dx.doi.org/10.1111/j.1749-6632.1999.tb09479.x10.1111/j.1749-6632.1999.tb09479.x10372179Search in Google Scholar

Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S. Skin Cancer Identification Using Multifrequency Electrical Impedance - A Potential Screening Tool . IEEE Transactions on Biomedical Engineering. 2004;51(12):2097102. http://dx.doi.org/10.1109/TBME.2004.836523AbergPNicanderIHanssonJGeladiPHolmgrenUOllmarSSkin Cancer Identification Using Multifrequency Electrical Impedance - A Potential Screening ToolIEEE Transactions on Biomedical Engineering200451122097102http://dx.doi.org/10.1109/TBME.2004.83652310.1109/TBME.2004.83652315605856Search in Google Scholar

Seoane F, Macías R, Bragós R, Lindecrantz K. Simple voltage-controlled current source for wideband electrical bioimpedance spectroscopy: circuit dependences and limitations. Measurement Science and Technology. 2011;22(11):1-11. http://dx.doi.org/10.1088/0957-0233/22/11/115801SeoaneFMacíasRBragósRLindecrantzKSimple voltage-controlled current source for wideband electrical bioimpedance spectroscopy: circuit dependences and limitationsMeasurement Science and Technology20112211111http://dx.doi.org/10.1088/0957-0233/22/11/11580110.1088/0957-0233/22/11/115801Search in Google Scholar

Lu L, Brown BH. The electronic and electronic interface in an EIT spectroscopy system. Inn. Tech. Biol. Med. 1994;15:97-103.LuLBrownBHThe electronic and electronic interface in an EIT spectroscopy systemInn. Tech. Biol. Med19941597103Search in Google Scholar

Bertemes-Filho P, Brown BH, Wilson AJ. A comparison of modified Howland circuits as current generators with current mirror type circuits. Physiol. Meas. 2000;20:1-6. http://dx.doi.org/10.1088/0967-3334/21/1/301Bertemes-FilhoPBrownBHWilsonAJA comparison of modified Howland circuits as current generators with current mirror type circuitsPhysiol. Meas20002016http://dx.doi.org/10.1088/0967-3334/21/1/30110.1088/0967-3334/21/1/30110719993Search in Google Scholar

Bertemes Filho P, Lima RG, Amato MBP et al. Performance of an Adaptative Multiplexed Current Source used in Electrical Impedance Tomography. In: XX Brazilian Congress Biomed. Eng. 2006; p. 1167-70.BertemesFilho PLimaRGAmatoMBPPerformance of an Adaptative Multiplexed Current Source used in Electrical Impedance TomographyXX Brazilian Congress Biomed. Eng2006116770Search in Google Scholar

Seoane F, Bragós R, Lindecranz K. Current source for multifrequency broadband electrical bioimpedance spectroscopy systems: a novel approach. In: IEEE Proc. of the EMBS Annual Int. Conf. New York: 2006. p. 5121-5.SeoaneFBragósRLindecranzKCurrent source for multifrequency broadband electrical bioimpedance spectroscopy systems: a novel approachIEEE Proc. of the EMBS Annual Int. ConfNew York20065121510.1109/IEMBS.2006.25956617945876Search in Google Scholar

Yufera A, Rueda A, Munoz J M et al. A tissue impedance measurement chip for myocardial ischemia detection. IEEE Transactions Circuits Syst. 2005;52(12).YuferaARuedaAMunozJ MA tissue impedance measurement chip for myocardial ischemia detectionIEEE Transactions Circuits Syst2005521210.1109/TCSI.2005.857542Search in Google Scholar

Tsunami D, McNames J, Colbert A et al. Variable Frequency Bioimpedance Instrumentation. In: Annual Int. Conf. of the IEEE EMBS. San Francisco: 2004. p. 1-5.TsunamiDMcNamesJColbertAVariable Frequency Bioimpedance InstrumentationAnnual Int. Conf. of the IEEE EMBSSan Francisco200415Search in Google Scholar

Hong, H, Rahal, M, Demosthenous, A et al (2007), Floating Voltage-Controlled Current Sources for Electrical Impedance Tomography, 18th European Conference on Circuit Theory and Design, 2007, pp 208-211. http://dx.doi.org/10.1109/ECCTD.2007.4529573HongH, Rahal, M, Demosthenous, A2007Floating Voltage-Controlled Current Sources for Electrical Impedance Tomography18th European Conference on Circuit Theory and Design2007208211http://dx.doi.org/10.1109/ECCTD.2007.452957310.1109/ECCTD.2007.4529573Search in Google Scholar

Uranga A, Sacristán J, Osés T et al. Electrode-tissue Impedance Measurement CMOS ASIC for Funtional Electrical Stimultion Neuroprostheses. IEEE Transactions on Inst.&Meas. 2007;56(5):2043-50.10.1109/TIM.2007.904479UrangaASacristánJOsésTElectrode-tissue Impedance Measurement CMOS ASIC for Funtional Electrical Stimultion NeuroprosthesesIEEE Transactions on Inst.&Meas2007565204350Open DOISearch in Google Scholar

Boone KG, Holder DS. Current approaches to analogue instrumentation design in electrical impedance tomography. Physiol. Meas. 1996;17:229-47. http://dx.doi.org/10.1088/0967-3334/17/4/001895362210.1088/0967-3334/17/4/001BooneKGHolderDSCurrent approaches to analogue instrumentation design in electrical impedance tomographyPhysiol. Meas19961722947http://dx.doi.org/10.1088/0967-3334/17/4/0018953622Search in Google Scholar

Raghed AO, Geddes LA, Bourland JD et al. Tetrapolar electrode system for measuring physiological events by impedance. Med. Biol. Eng. Comput. 1992;30:115-7. http://dx.doi.org/10.1007/BF02446203164074310.1007/BF02446203RaghedAOGeddesLABourlandJDTetrapolar electrode system for measuring physiological events by impedanceMed. Biol. Eng. Comput1992301157http://dx.doi.org/10.1007/BF024462031640743Search in Google Scholar

Jivet I, Dragoi B. On-electrode autonomous current generator for multi-frequency EIT. Physiol. Meas. 2008;29:S193–201. http://dx.doi.org/10.1088/0967-3334/29/6/S1710.1088/0967-3334/29/6/S1718544811JivetIDragoiBOn-electrode autonomous current generator for multi-frequency EITPhysiol. Meas200829S193201http://dx.doi.org/10.1088/0967-3334/29/6/S1718544811Open DOISearch in Google Scholar

Casas O, Rosell J et al. A parallel broadband real-time system for electrical impedance tomography. Physiol. Meas. 1996;17:A1–6. http://dx.doi.org/10.1088/0967-3334/17/4A/00210.1088/0967-3334/17/4A/0029001596CasasORosellJA parallel broadband real-time system for electrical impedance tomographyPhysiol. Meas199617A16http://dx.doi.org/10.1088/0967-3334/17/4A/002Open DOISearch in Google Scholar

Seoane F, Bragos R, Lindecrantz K, Riu PJ. Current Source Design for Electrical Bioimpedance Spectroscopy. In: Encyclopedia of Healthcare Information Systems. 2008. p. 359-67.SeoaneFBragosRLindecrantzKRiuPJCurrent Source Design for Electrical Bioimpedance SpectroscopyEncyclopedia of Healthcare Information Systems20083596710.4018/978-1-59904-889-5.ch047Search in Google Scholar

Seoane F, Bragós R, Lindercrantz K, Riu PJ. Current Source Design for Electrical Bioimpedance Spectroscopy. In: Encyclopedia of Healthcare information Systems. New York: 2008. p. 359-66.SeoaneFBragósRLindercrantzKRiuPJCurrent Source Design for Electrical Bioimpedance SpectroscopyEncyclopedia of Healthcare information SystemsNew York20083596610.4018/978-1-59904-889-5.ch047Search in Google Scholar

Vincence VC, Galup-Montoro C, Schneider MC. A High Swing MOS Cascode Bias Circuit. IEEE Trans. Circuits and Systems. 2000;47(11):1325-8. http://dx.doi.org/10.1109/82.88514310.1109/82.885143VincenceVCGalup-MontoroCSchneiderMCA High Swing MOS Cascode Bias CircuitIEEE Trans. Circuits Systems2000471113258http://dx.doi.org/10.1109/82.885143Open DOISearch in Google Scholar

Carvajal RG, Ramírez-Angulo J, López-Martín A et al. The Flipped Voltage Follower: A Useful Cell for Low-Voltage Low-Power Circuit Design. IEEE Transactions on Circuits and Systems. 2005;52(7):1276-91. http://dx.doi.org/10.1109/TCSI.2005.85138710.1109/TCSI.2005.851387CarvajalRGRamírez-AnguloJLópez-MartínAThe Flipped Voltage Follower: A Useful Cell for Low-Voltage Low-Power Circuit DesignIEEE Transactions on Circuits and Systems2005527127691http://dx.doi.org/10.1109/TCSI.2005.851387Open DOISearch in Google Scholar

Salem SB, Fakhfakh A, Loulou M, Loumeau P, Masmoudi N. A 2.5V 0.35μm CMOS Current Conveyor and High Frequency High-Q Band-Pass Filter. In: Proceedings of the 16th International Conference on Microelectronics. Tunis: 2004. p. 328-33. http://dx.doi.org/10.1109/ICM.2004.1434578SalemSBFakhfakhALoulouMLoumeauPMasmoudiNA 2.5V 0.35μm CMOS Current Conveyor and High Frequency High-Q Band-Pass FilterProceedings of the 16th International Conference on MicroelectronicsTunis200432833http://dx.doi.org/10.1109/ICM.2004.143457810.1109/ICM.2004.1434578Search in Google Scholar

Kumngern M, Moungnoul P, Junnapiya S, Dejhan K. Current-mode universal filter using translinear current conveyors. In: Proceedings of the 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Krabi: 2008. p. 717-20.KumngernMMoungnoulPJunnapiyaSDejhanKCurrent-mode universal filter using translinear current conveyorsProceedings of the 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information TechnologyKrabi20087172010.1109/ECTICON.2008.4600531Search in Google Scholar

Knobnob B, Kumngern M, Dejhan K. Current-mode quadrature oscillator using translinear current conveyors. In: Proceedings of the 2008 International Symposium on Communications and Information Technologies. Vientiane: 2008. p. 196-9. http://dx.doi.org/10.1109/ISCIT.2008.4700181KnobnobBKumngernMDejhanKCurrent-mode quadrature oscillator using translinear current conveyorsProceedings of the 2008 International Symposium on Communications and Information TechnologiesVientiane20081969http://dx.doi.org/10.1109/ISCIT.2008.470018110.1109/ISCIT.2008.4700181Search in Google Scholar

Arslan E, Morgul A. Wideband self-biased CMOS CCII. In: Proceedings of the 2008 PhD research in microelectronics and electronics. Istanbul: 2008. p. 217-20. http://dx.doi.org/10.1109/RME.2008.4595764ArslanEMorgulAWideband self-biased CMOS CCIIProceedings of the 2008 PhD research in microelectronics and electronicsstanbul200821720http://dx.doi.org/10.1109/RME.2008.459576410.1109/RME.2008.4595764Search in Google Scholar

Ibrahim MA, Kuntman H, Cicekoglu O. A very highfrequency CMOS self-biasing complementary folded cascade differential difference current conveyor with application examples. In: Proceedings of the 45th Midwest Symposium on Circuits and Systems, Oklahoma: 2002. p. 279-82.IbrahimMAKuntmanHCicekogluOA very highfrequency CMOS self-biasing complementary folded cascade differential difference current conveyor with application examplesProceedings of the 45th Midwest Symposium on Circuits and SystemsOklahoma200227982Search in Google Scholar

Ferri G, Guerrini NC. Low-voltage, low-power CMOS current conveyors. Dordrecht: Kluwer Academic Publishers, 2003.FerriGGuerriniNCLow-voltage, low-power CMOS current conveyorsDordrechtKluwer Academic Publishers2003Search in Google Scholar

Ross AS, Saulnier GJ, Newell JC, Isaacson D. Current source design for electrical impedance tomography. Physiological Measurement. 2003; 24(2):509-16. http://dx.doi.org/10.1088/0967-3334/24/2/3611281243410.1088/0967-3334/24/2/361RossASSaulnierGJNewellJCIsaacsonDCurrent source design for electrical impedance tomographyPhysiological Measurement200324250916http://dx.doi.org/10.1088/0967-3334/24/2/36112812434Search in Google Scholar

Bertemes-Filho P, Lima RG, Tanaka H. A Current Source using a Negative Impedance Converter (NIC) for Electrical Impedance Tomography (EIT). In: Proceedings of the 17th International Congress on Mechanical Engineering. São Paulo: 2003. p. 83-7.Bertemes-FilhoPLimaRGTanakaHA Current Source using a Negative Impedance Converter (NIC) for Electrical Impedance Tomography (EIT)Proceedings of the 17th International Congress on Mechanical EngineeringSão Paulo2003837Search in Google Scholar

Bertemes-Filho P, Paterno AS, Pereira, RM. Multichannel Bipolar Current Source Used in Electrical Impedance Spectroscopy: Preliminary Results. In: World Congress on Medical Physics and Biomedical Engineering. Munich: 2009. p. 657-60.Bertemes-FilhoPPaternoASPereiraRMMultichannel Bipolar Current Source Used in Electrical Impedance Spectroscopy: Preliminary ResultsWorld Congress on Medical Physics and Biomedical EngineeringMunich20096576010.1007/978-3-642-03885-3_182Search in Google Scholar

Bertemes-Filho P, Vincence VC, Zanatta IX. A Comparison of Modified CMOS Transconductance Amplifiers with Howland Circuit for Low Power Electrical Bioimpedance Instrumentation. In: 5th European Conference of the International Federation for Medical and Biological. Budapest: 2011. p. 1-4. http://dx.doi.org/10.1007/978-3-642-23508-5_53Bertemes-FilhoPVincenceVCZanattaIXA Comparison of Modified CMOS Transconductance Amplifiers with Howland Circuit for Low Power Electrical Bioimpedance Instrumentation5th European Conference of the International Federation for Medical and BiologicalBudapest201114http://dx.doi.org/10.1007/978-3-642-23508-5_5310.1007/978-3-642-23508-5_53Search in Google Scholar