Acceso abierto

Production, Characterization and Valuable Applications of Exopolysaccharides from Marine Bacillus subtilis SH1


Cite

Abdel-Fattah M., M. Gamal-Eldeen, W.A. Helmy and MA.H. Esawy. 2012. Antitumor and antioxidant activities of levan and its derivative from the isolate Bacillus subtilis NRC1aza. Carbohydr. Polym. 89(2): 314–322. Search in Google Scholar

Abdul Razack S., V. Velayutham and V. Thangavelu. 2013. Influence of various parameters on exopolysaccharide production from Bacillus subtilis. Int. J. Chem. Tech. Res. CODEN (USA) 5(5): 2221–2228. Search in Google Scholar

Abou-Dobara M.I., A.A. El-Fallal, E. Toson, A. Abbas and F. El-Feky. 2014. Optimization of exopolysaccharides production by Bacillus subtilis. Pharmacol. 1: 140–148.10.21608/sjdfs.2014.194304 Search in Google Scholar

Ahmed E.F., N.M. Mansour, W.A. Helmy, W.M. El-Senousy, M.M. El-Safty and M.A. Esawy. 2010. Production of an antiviral levan from novel honey Bacillus subtilis isolates. J. Gen. Engin Bio-technol. 8(1): 71–79. Search in Google Scholar

Anju P., N. Milind and D.K. Santosh. 2010. Hemolysin, protease, and EPS producing pathogenic Aeromonas hydrophila strain An4 shows antibacterial activity against marine bacterial fish pathogens. J. Mar. Biol. 10: 1–9.Bajaj B.K., H. Pangotra, M.A. Wani, P. Sharma and A. Sharma. 2009. Partial purification and characterization of a highly thermostable and pH stable endogluconase from a newly isolated Bacillus strain M-9. Ind. J. Chem. Technol. 16: 382–387. Search in Google Scholar

Berekaa M.M. 2014. Improved exopolysaccharide production by Bacillus licheniformis strain-QS5 and application of statistical experimental design. Int. J. Curr. Microbiol. App. Sci. 3(4): 876–886 Search in Google Scholar

Bhaskar P.V. and N.B. Bhosle. 2005. Microbial extracellular polymeric substances in marine biogeochemical processes. Curr. Sci. 88(1): 45–53. Search in Google Scholar

Dahech I., K.S. Belghith, H. Belghith and H. Mejdoub. 2012. Partial purification of a Bacillus licheniformis levan sucrase producing levan with antitumor activity. Int. J. Biol. Macromolecul. 1(3): 329–335.10.1016/j.ijbiomac.2012.04.030 Search in Google Scholar

Dargan D.J. 1998. Investigation of the anti HSV activity of candidate antiviral agents, pp. 387–405. In: Brown S.M. and A.R. MacLean (eds). Methods in Molecular Medicine. Humana Press Inc., Totowa. de Godoi A.M., L.C. Faccin-Galhardi, N. Lopes, D. Zendrini Rechenchoski, R.R. de Almeida, N.M. Pontes Silva Ricardo, C. Nozawa and R.E. Carvalho Linhares. 2014. Antiviral activity of sulfated polysaccharide of Adenanthera pavonina against Poliovirus in HEp-2 cells. Malaysian J. Microbiol. 8(3): 170–174. Search in Google Scholar

Cabral de Melo F.C.B., D. Borsato, J.B. Buzato and M.A.P.C. Celligoi. 2010. Levan from Bacillus subtilis natto: optimization of productivity using factorial design. J. Biotechnol. 150S: S378.10.1016/j.jbiotec.2010.09.464 Search in Google Scholar

EL-Masry M.H., A.I. Khalil, M.S. Hassouna and H.A.H. Ibrahim. 2002. In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World J. Microbiol. Biotechnol. 18: 551–558.10.1023/A:1016302729218 Search in Google Scholar

Gangadevi V. and J. Muthumary. 2007. Preliminary studies on cytotoxic effect of fungal taxol on cancer cell lines. Afr. J. Biotechnol. 6: 1382–1386. Search in Google Scholar

Ghaly A.E., F. Arab, N.S. Mahmoud and J. Higgins. 2007. Production of levan by Bacillus licheniformis for use as a sealant in earthen manure storage structures. Amer. J. Biotechnol. Biochem. 3: 47–54. Hu J.M. and G.D. Hsiung. 1989. Evaluation of new antiviral agents: I. In vitro perspectives. Antiviral Res. 11(5–6):217–32.10.3844/ajbbsp.2007.47.54 Search in Google Scholar

Hu C. and D.D. Kitts. 2000. Studies on the antioxidant activity of Echinacea root extract. J. Agric. Food Chem. 48: 1466–1472.10.1021/jf990677+ Search in Google Scholar

Ikeda F., H. Shuto, T. Fukui and K. Tomita. 1982. An extracellular polysaccharide produced by Zoogloea ramigera 115. Eur. J. Biochem. 123: 437–445.10.1111/j.1432-1033.1982.tb19787.x Search in Google Scholar

Jane Y.W. and Y. Hsiu Feng. 2007. Characterization and flocculating properties of an extracellular biopolymer produced from Bacillus subtilis DYU1 isolate, Process Biochem. 42: 1114–1123. Search in Google Scholar

Kaura A., V. Gupta, G.S. Roy and M. Kaura. 2013. Spectrophotometric determination of chlorpheniramine maleate and phenylpropanolamine hydrochloride in dosage forms. Int. Curr. Pharmaceut. J. 2(5): 97–100. Search in Google Scholar

Kennedy A.F.D. and I.W. Sutherland. 1987. Analysis of bacterial exopolysaccharides. Biotechnol. Appl. Biochem. 9: 12–19. Search in Google Scholar

Kimmel S.A. and R.F. Roberts. 1998. Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR. Int. J. Food Microbiol. 40: 87–92. Ko S.-H., H.S. Lee, S.H. Park and H.K. Lee. 2000. Optimal conditions for the production of exopolysaccharide by marine microorganism Hahellachejuensis. Biotechnol. Bioprocess Eng. 5: 181–185. Kumar C.G., H.-S. Joo, J.-W. Choi, Y.-M. Koo and C.-S. Chang. 2004. Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzy. Microbiol. Technol. 34: 673–668110.1016/S0168-1605(98)00023-3 Search in Google Scholar

Lee I.Y., W.T. Seo, G. Kim, J. Kim, M.K. Ahn, S.G. Kwon and Y.H. Park. 1997. Optimization of fermentation conditions for production of exopolysaccharide from Bacillus polymyxa. Bioprocess Engin. 16: 71–75.10.1007/s004490050290 Search in Google Scholar

Li Y., Li , Guo S. and Zhu H. 2016. Statistical optimization of culture medium for production of exopolysaccharide from endophytic fungus Bionectria ochroleuca and its antitumor effect in vitro. EXLI J. 15: 211–220. Search in Google Scholar

Lian, B., Y. Chen, J. Zhao, H.H. Teng, L.J. Zhu, and S. Yuan. 2008. Microbial flocculation by Bacillus mucilaginosus: applications and mechanisms. Bioresour Technol. 99: 4825–4831.10.1016/j.biortech.2007.09.04517967531 Search in Google Scholar

Looijesteijn P.J., W.H.M. Van Casteren, R. Tuinier, D. Voragen and J. Hugenholtz. 2000. Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by Lactococcuslactis subsp. cremoris in continuous cultures. J. Appl. Microbiol. 89(1): 116–122. Search in Google Scholar

Marshall V.M.E., E.N. Cowie and R.S. Moreton. 1995. Analysis and production of two exopolysaccharides from Lactococcus lactis subsp. cremoris LC330. J. Dairy Res. 62: 621–628.10.1017/S0022029900031356 Search in Google Scholar

Matsuda M. and W. Worawattanamateekul. 1993. Structural analysis of a rhamnose-containing sulfated polysaccharide from a marine Pseudomonas. Nippon Suisan Gakkaishi 59: 875–878.10.2331/suisan.59.875 Search in Google Scholar

Mengistu Y., C. Edward and J.R. Saunders. 1994. Continuous culture studies on the synthesis of capsular polysaccharide by Klebsiella pneumoniae K1. J. Appl. Bacteriol. 76: 424–430.10.1111/j.1365-2672.1994.tb01098.x8005831 Search in Google Scholar

Mukherjee A., S.A. Morosky, E. Delorme-Axford, N. Dybdahl-Sissoko, M.S. Oberste, T. Wang and C.B. Coyne. 2011. The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLoS Pathog. 7(3): 100–111. Nanda A. and C.M. Raghavan. 2014. Production and characterization of exopolysacharides (EPS) from the bacteria isolated from Pharma lab sinks. Int. J. Pharm. Tech. Res. 6(4): 1301–1305. Search in Google Scholar

Nwodo U.U., E. Green and A.I. Okoh. 2012. Bacterial exopolysaccharides: functionality and prospects. Int. J. Mol. Sci. 13: 14002–14015.10.3390/ijms131114002350956223203046 Search in Google Scholar

Ohno N., N. Miura, M. Nakajima and T. Yadomae. 2000. Antitumor 1–3-glucan from cultured fruit body of Sparasis crispa. Boil Pharm. Bul. 23: 866–872.10.1248/bpb.23.86610919368 Search in Google Scholar

Orsod M., M. Joseph and F. Huyop. 2012. Characterization of exopolysaccharides produced by Bacillus cereus and Brachybacterium sp. isolated from Asian Sea Bass (Latescalcarifer). Mal. J. Microbiol. 8(3): 170–174. Search in Google Scholar

Patil S.V., G.A. Bathe, A.V. Patil, R.H. Patil and B.K. Salunkea. 2009. Production of bioflocculant exopolysaccharide by Bacillus subtilis. Advanced Biotech. 14–17. Search in Google Scholar

Philippis, R., M.C. Margheri, E. Pelosi and S. Ventura. 1993. Exopolysaccharide production by a unicellular cyanobacterium isolated from a hypersaline habitat. J. Appl. Phycol. 5: 387–394.10.1007/BF02182731 Search in Google Scholar

Prathima P.C., V.K. Lule, S.K. Tomar and A.K. Singh. 2014. Optimization of Exopolysaccharide production by Lactococccus lactis NCDC 191 by Response Surface Methodology. Int. J. Curr. Microbiol. App. Sci. 3(5): 835–854. Search in Google Scholar

Rabha B., R.S. Nadra and B. Ahmed. 2012. Effect of some fermentation substrates and growth temperature on exopolysaccharide production by Streptococcus thermophilus BN1. Int. J. Biosci Biochem. Bioinfo. 2: 44–47.10.7763/IJBBB.2012.V2.67 Search in Google Scholar

Raguenes G., P. Pignet, G. Gauthier, A. Peres, R. Christen, H. Rougeaux, G. Barbier and J. Guezennec. 1996. Description of a new polymer-secreting bacterium from a deep sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis, and preliminary characterization of the polymer. Appl. Environ. Microbiol. 62: 67–73. Search in Google Scholar

Rawal P.M., P.B. Chauhan, H. Prajapati and M. Gahlout. Evaluation of cultivation condition for enhanced production of exopolysaccharide by bacterial isolate P 11 under submerged culture condition. Int. J. Adv. Res. Biol. Sci. 3(5): 183–190. Search in Google Scholar

Robert M., U. Zang, J. Chorover, L. Haumaier and K. Kalbitz. 2011. Stabilisation of extracellular polymeric substances (Bacillus subtilis) by adsorption to and co precipitation with Al forms. Geochimica et Cosmochimica Acta 75: 3135–3154.10.1016/j.gca.2011.03.006 Search in Google Scholar

Rodrigues C. and N.B. Bhosle. 1991. Exopolysaccharide production by Vibrio fischeri, a fouling marine bacterium. Biofouling 4: 301–308. Sanlibaba P. and G.A. Çakmak. 2016. Exopolysaccharides production by lactic acid bacteria. Appl. Microbiol. 2(2): 1–5. Search in Google Scholar

Savadogo A., C.W. Savadogo, N. Barro, A.S. Ouattara and A.S. Traore. 2004. Identification of exopolysaccharides producing lactic acid bacteria from Burkino Faso fermented milk samples. Afr. J. Biotechnol. 3: 189–194.10.5897/AJB2004.000-2034 Search in Google Scholar

Shankar C.V.S., A. Malar and S.M.J. Punitha. 2010. Antimicrobial activity of marine bacteria associated with polychaetes. Bioresear Bull. 1: 24–28. Search in Google Scholar

Shukla V., M. Patel and S. Duggirala. 2015. Isolation, structural characterization and production of exopolysaccharide using batch culture by Bacillus spp. isolated from soil. Int. J. Res. Engin. Appl. Sci. 3(2): 102–109. Search in Google Scholar

Tallgren A.H., U. Airaksinen, R. von Weissenberg, H. Ojamo, J. Kuusisto and M. Leisola. 1999. Exopolysaccharide-producing bacteria from sugar beets. Sci. J. Damietta Faculty Sci. 3 (1): 11–21. Trabelsi L., N.H. M’sakni, H.B. Ouada, H. Bacha and S. Roudesli. 2009. Partial characterization of extracellular polysaccharides produced by Cyanobacterium arthrospira platensis. Biotechnol. Biopro. Engin. 14: 27–3110.1007/s12257-008-0102-8 Search in Google Scholar

Venkateswarulu T.C., K. Chakravarthy, R. Reddy, J. Babu and V. Kodali. 2016. Morphological and biochemical characterization of exopolysaccharide producing bacteria Isolated from dairy effluent indira M1. Pharm. Sci. Res. 8(2): 88–91. Search in Google Scholar

Vijayabaskar P., S. Babinastarlin, T. Shankar, T. Sivakumar and K.T.K. Anandapandian. 2011. Quantification and characterization of exopolysaccharides from Bacillus subtilis (MTCC 121). Adv. Biol. Res. 5: 71–76. Search in Google Scholar

Vijayan K., P.P. Srivastava and A.K. Awasthi. 2004. Analysis of phylogenetic relationship among five mulberry (Morus) species using molecular markers. Genome 47(3): 439–448.10.1139/g03-14715190361 Search in Google Scholar

Vimala P. and D. Lalithakumari. 2003. Characterization of exopolysaccharide (EPS) produced by Leuconostoc sp. V 41. Asian J. Microbiol. Biotechnol. Environ. Sci. 5(2): 161–165. Search in Google Scholar

Wu C.Y., Z.C. Liang, C.P. Lu and S.H. Wu. 2008. Effect of carbon and nitrogen sources on the production and carbohydrate composition of exopolysaccharide by submerged culture of Pleurotus citrinopileatus. J. Food Drug Anal. 16: 61–67.10.38212/2224-6614.2364 Search in Google Scholar

Yada V., S.G. Prappulla, A. Jha and A. Poonia. 2011. A novel exopolysaccharide from probiotic Lactobacillus fermentum CFR 2195: production, purification and characterization. Biotechnol. Bioinf. Bioeng. 1(4): 415–421. Search in Google Scholar

You R.X., K.P. Wang, J.Y. Liu, M.C. Liu, L. Luo and Y. Zhang. 2011. A comparison study between different molecular weight polysaccharides derived from Lentinus edodes and their antioxidant activities in vivo. Pharm. Biol. 49: 1298–1305.10.3109/13880209.2011.62196022077165 Search in Google Scholar

Zandi K., M. Abbas Zadeh, K. Sartavi and Z. Rastian. 2007. Antiviral activity of Aloe Vera against herpes simplex virus type 2: An in vitro study. Afr. J. Biotechnol. 6: 1770–1773.10.5897/AJB2007.000-2276 Search in Google Scholar

eISSN:
2544-4646
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Microbiology and Virology